Computing with Abstract Matrix Structures

Alan P. Sexton, Volker Sorge Stephen M. Watt
University of Birmingham University of Western Ontario
UK Canada

Motivation
What is the shape of the results of the following expressions:

a --- a b b

0 4 lo b

Motivation
What is the shape of the results of the following expressions:

2 - a1 b - b [a,b] --- [ab]
[0 ;] L " ij E { 0o [afb]]

Motivation

What is the shape of the results of the following expressions:

a ...

a

a

|

b ...
0
0"
b
b

[av b] [aa b]

|

2

o

0 a4

Motivation
What is the shape of the results of the following expressions:

3 e a1 b .- b [a,b] --- [ab]
o] L " ij E { 0o [afb]]

a2 . 3 012 rla] - [4] 01
ho | = 14 b] --- [b]
0 b] L0 [b]]

Motivation

all “ ..

dln 0]

Cll o ..

Clm

Cmm

dig -

dl n

A

Motivation

all “ ..

dln 0]
ann
bi1 -+ bim
B
rlac] --- [ac]
ac
[ac] (bd]
L 0

Cll o ..

-+ [bd]

A [b:d]_

Clm

Cmm

dig -

dl n

" Ao

Motivation

al]. e

m<n:

din

ann

by -

[ac] -

bl L0

blm

[ac] [ad] -

[ac]
[ad]

I

Cll e

Clm

Cmm

dyp -

" Ao

A [b:d]_

dl n

[ad]]

ad

Motivation

al]. e

n<m:

din

ann

by -

[ac] - --

1 a1 - cam 0
blm Cmm dll
b L 0

[ac]
*ia % g ey -
[be]
[bd]

A [b:d]_

" Ao

dl n

0 -

[bd]

Motivation

» Abstract Matrices are matrices that contain unspecified
components, such as ellipses or symbolic dimension

» We developed a parsing algorithm to make them available as
templates for symbolic computation [ISSAC 06]

» This talk: doing arithmetic with them

Motivation

» Abstract Matrices are matrices that contain unspecified
components, such as ellipses or symbolic dimension

» We developed a parsing algorithm to make them available as
templates for symbolic computation [ISSAC 06]

» This talk: doing arithmetic with them

» Choice of internal representation makes naive evaluation
straightforward

Motivation

» Abstract Matrices are matrices that contain unspecified
components, such as ellipses or symbolic dimension

» We developed a parsing algorithm to make them available as
templates for symbolic computation [ISSAC 06]

» This talk: doing arithmetic with them

» Choice of internal representation makes naive evaluation
straightforward

» Challenge is to recover region shapes of result

» Expose interactions between regions in the arithmetic
» Support investigation of properties of shaped matrices

Motivation

» Abstract Matrices are matrices that contain unspecified
components, such as ellipses or symbolic dimension

» We developed a parsing algorithm to make them available as
templates for symbolic computation [ISSAC 06]

» This talk: doing arithmetic with them

» Choice of internal representation makes naive evaluation
straightforward

» Challenge is to recover region shapes of result

» Expose interactions between regions in the arithmetic
» Support investigation of properties of shaped matrices

» Compute with AMs, specialize results as unspecified elements
become known

Abstract Matrix

[a11 -+ ain 0 i

0

L bmm_

» Abstract matrices are composed of a set of regions
» Region shape is a closed convex polygonal area

» Region content is interpolated from a generalised term (a
term with unification variables)

ajj ifi,jE{l...n}
b(,-_,,),(j_n) ifi,je {n+1...n+m}
0 otherwise

Half Plane Constraints

[a11 -+ a1n 0 i

A= ann

0 " b

» Convex polygons represented as intersections of half planes

» Region shapes represented as conjunction of half plane
constraints

» Concave regions have to be decomposed into convex regions

(i—a1)+(—r)<(e2— m LR a i i<ap
\ i—q1<(j—r1) j<n
/ - a1,
A e R S—
. . I qy, r
\ i—q>(—r) ™ {izn l 1:12
A i—a1)+(—r1)=(a2—a1) i>a

a2, apn fao,n

Support Function

» Use support (or characteristic) functions to represent
half-plane contraints:

(x.y) 1 ifx<y
o(x, = i
Y 0 otherwise

We write o, for convenience
» Conjunction of constraints = product of support functions

» Restrict terms to regions by multiplying by products of os

Expressing Abstract Matrices in os

[a11 -+ a1n 0 i

_ ann
A= bi1 -+ bim

0 B

» Every region can be expressed as a product of os and its

generalised term
» An Abstract Matrix is a sum of region terms

A = 01,0} 00} jajj + Ont1,i0j.n+m0ijbi—nj—n

where /i, j are the index variables

Expressing Abstract Matrices in os

[a11 -+ a1n 0 i

B ann
A= bi1 -+ bim

L 0 bmm_

» Every region can be expressed as a product of os and its
generalised term

» An Abstract Matrix is a sum of region terms

m+n,m+n

A = [01,i0),n01jaij + Ont1,i0j,n+m0i jbi—nj—n];

Expressing Abstract Matrices in os

[a11 -+ a1n 0 i

_ ann
A= bi1 -+ bim

0 B

» Every region can be expressed as a product of os and its

generalised term

» An Abstract Matrix is a sum of region terms

_ m+n,m+n
A = [01,i0j n0]jajj + Un+17i0j7n+m0igbi—nj—n],'J

» Note: region structure can be read directly (in this case)

Some properties of o

Oxx =1

Ox,y = Ox+z,y+z

Ox,y = O0—y,—x
OxyOyx =1&x=y

Oy+1x0xy = 0
Complement of a half-plain constraint:
Ox,y = Oy x—1
Complement of a region:

0102 ...0, =01 + 0201 + 030100+ -+ 0p0102...0p

N

N

~ o~ —~ —~
o1 w
~— ~— ~— ~— ~—

Naive Matrix Addition

» Abstract Matrix Addition is now simple (symbolic) addition

[ai 177" + [bi]7" = laij + bijl];"

» Example:
T ro / / 1,n
U’ = [Ul) uz,...,Up, U, Uy, ..., un—h] = [Uj,h uj + Oh+1,j uj—h]i_j
T ro / / Ln
Vi= [vl, Vo, ooy Vi, VI, Vo, s, vn_k] = [Uj,k Vi + Ok ‘/f—k]i,j
1,n

T T / /
UT + VT = [ojn uj+ 0hirj Ujop + 0 Vi + Ohtrj Viok]

Naive Matrix Addition

» Abstract Matrix Addition is now simple (symbolic) addition

[ai 177" + [bi]7" = laij + bijl];"

» Example:
T ro / / 1,n
U’ = [Ul’ uz,...,Up, U, Uy, ..., un—h] = [Uj,h uj + Oh+1,j uj—h]i_j
T ro / / Ln
Vi= [vl, Vo, ooy Vi, VI, Vo, s, vn_k] = [Uj,k Vi + Ok vj_k]’.J.

T T / roqhn

UT + VT = [ojn uj+ 0hirj Ujop + 0 Vi + Ohtrj Viok]

» BUT: region structure is lost (because summands no longer
describe disjoint regions)

Matrix Addition: Recovering Structure

» Decompose into set of convex region terms so that every pair
is either disjoint or has the same shape and location

Matrix Addition: Recovering Structure

» Decompose into set of convex region terms so that every pair
is either disjoint or has the same shape and location
» use set theory (and region complement definition) to construct
a disjoint cover, and project each region onto the elements of
the cover

Matrix Addition: Recovering Structure

» Decompose into set of convex region terms so that every pair
is either disjoint or has the same shape and location

» use set theory (and region complement definition) to construct
a disjoint cover, and project each region onto the elements of
the cover

» Rewrite each region term into a simple structure so that the
full region shape information is easily extractible from the term

» Remove superfluous regions

» Simplify the region description part of the term

Matrix Addition: Recovering Structure

» Decompose into set of convex region terms so that every pair
is either disjoint or has the same shape and location

» use set theory (and region complement definition) to construct
a disjoint cover, and project each region onto the elements of
the cover

» Rewrite each region term into a simple structure so that the
full region shape information is easily extractible from the term

» Remove superfluous regions

» Simplify the region description part of the term

Matrix Multiplication

n m,p
m,n n, _
[ai 17" 6117 = | > aikbi
k=1 iJj
Note: Multiplication introduces a syntactic summation operator

» Example:

- 11,1

T / /

Uuv= Z (UI,h ur+ oht, ul—h) (Ul,k Vi + Oky1, V/_k)

L/=1 dij
[n ’ 11,1

B O1LhO 1k UV + O1hO k1,1 UV +

- / / /

=1 \Oh+1,100k U_pVI + Oht110k+1,1 Up—pVi—k

Matrix Multiplication Example

ailr -+ din

0 Brm 0 don

n+m,n+m _ m+n,m+n
A= [Uj,nai,j a—+ On+1,i0i f b]i,j B = [Uj,mUi,j c+ Om+1,i0i,j d]iJ

n+m,n+m
Ok,n0i kOjmOk.j ac—+
n+m
Ok,n0i kO m+1,kOk,j ad-+
AB = § J
=1 | Tn+1i0i k0 mOk bc+
Ont1,i0ikOmi1,k0k; bd i

Key insight: os involving the summation variable k do not
represent half plane constraints

Matrix Multiplication Example (cont.)

n+m n+m 9 n+m,n+m
§ Ok,n0i kOjmOkj ac + E Ok,n0i kOm+1,kOkj ad+
- k=1 k=1
- n+m n+m
§ Ont1,i0ik0j,mOkj bc+ E Ont1,i0i kOm+1,k0k,j bd
L k=1 k=1 dij

Matrix Multiplication Example (cont.)

n+m n+m 9 n+m,n+m
§ Ok,n0i kOjmOkj ac + E Ok,n0i kOm+1,kOkj ad+
- k=1 k=1
- n+m n+m
§ Ont1,i0ik0j,mOkj bc + E Ont1,i0i kOm+1,k0k,j bd
L k=1 k=1 dij

Matrix Multiplication Example (cont.)

n+m n+m 9 n+m,n+m
§ Ok,n0i kOjmOkj ac + E Ok,n0i kOm+1,kOkj ad+
- k=1 k=1
- n+m n+m
§ Ont1,i0ik0j,mOkj bc + E Ont1,i0i kOm+1,k0k,j bd
L k=1 k=1 dij

Matrix Multiplication Example (cont.)

n+m n+m 9 n+m,n+m
§ Ok,n0i kOjmOkj ac + E Ok,n0i kOm+1,kOkj ad+
- k=1 k=1
- n+m n+m
§ Ont1,i0ik0j,mOkj bc+ E Ont1,i0i kOm+1,k0k,j bd
L k=1 k=1 dij

For each summand we extract the full partial order defined by the

o product, excluding terms involving k
ad bc bd

m

ac
n m j
‘ n j j .
) K
k k . i m+1
i
i m+1 i n+1 n+1

0j,m0in0ij 0ij0in0milj Ontli0ij0jm Ontl,i0ijOm+1,

Multiplication Example (cont.)

OjmOin0jj O0ijO0inOm+1j On+1,i0ij0jm On+1,i0ij0Om+1,j

[ac] [ad] [be] [bd]

Multiplication Example (cont.)

0j,m0jn0jj

[ac]

[ad]
fac] -+ [ac]

[ac]
| 0

0ij0i,nOm+1,j On+1,i0ij0jm

[be]
0 -

[bd] --- [bd]

" [bdl.

On+1,i07 jOm+1,j

[bd]

Multiplication Example (cont.)

OjmOin0jj O0ijO0inOm+1j On+1,i0ij0jm On+1,i0ij0Om+1,j

[ac] [ad] [bc] [bd]
f[ac] -+ [ac] [ad] -+ -+ - - [ad]]
[ac]
m<n: [ad] . .
. [ad] - - (aH
[bd] --- [bd
L0 bl

Multiplication Example (cont.)

OjmOin0jj O0ijO0inOm+1j On+1,i0ij0jm On+1,i0ij0Om+1,j
[ac] [ad] [bc] [bd]
flac] -+ - -+ [ac] 0 -
lac] -+ [ac]
[bc] -+ [bc] [bd] --- [bd]
n<m: h : : :
[bc]
[bd]

L0 bl

Grammar

M = [F]ieXP,ieXP [= Tiexp,iexp [’ €

var,var
iexp
Fu=R|R+F T u=exp| » (F)IF
var=1
R:=TT|T
iexp = var | int | —iexp | iexp + iexp | iexp — iexp

var: a single variable name

int: a single, non-negative integer

exp: an arbitrary functional expression, that can contain
var and int terms.

The term for an Abstract Matrix thus has the form:

[M]Z}m _ [Rl R Rk]Z}’" = [I'1T1 4+t rka]Z}m

Regular Form

We define a set of formal properties that the Abstract Matrix term
must have so that it the region structure is easily extractible from
it, the term is appropriately minimal and it can be used as input
arguments to further Abstract Matrix operations, hence ensuring
closure in the arithmetic:

» Disjoint

» Convex

» [-Partitioned

» Non-Empty

» [-Minimal
These properties are formally specified in terms of the grammar
and equations in the sigma functions.

Algorithms

ADD: Directly construct non-regularised addition result
term from input Abstract Matrices
» Result is Disjoint, Convex and I'-Partitioned, but
not necessarily Non-Empty or [-Minimal
MULT: Directly construct non-regularised multiplication
result term from input Abstract Matrices
» Result is Disjoint and Convex, but not
necessarily [-Partitioned, Non-Empty or
-Minimal
NORM: Rewrite an Abstract Matrix term that is Disjoint and
Convex into a Regular term

NORM

A 3-stage rewrite system with 4 sets of rules:

Stage 1: Transitive Closure creates all possible o expressions that
can be read from the Hasse diagrams

Stage 2: Factoring factors single os out of summations

Stage 3: Reduction reduces I' expression by removing superflous o
expressions.

The contraction rules can be applied during each stage for

simplification, but must always be exhaustively applied
We can prove correctness, termination and confluence

Conclusions

» Useful representation for symbolic representation of AMs

v

Algorithms for addition and multiplication of AMs
» AMs are closed under these operations

» Operations propagate region structure information
» Proofs of correctness, termination and confluence

» Makes a contribution to a previously under-explored area of
symbolic and algebraic computation

