
Computing with Abstract Matrix Structures

Alan P. Sexton, Volker Sorge
University of Birmingham

UK

Stephen M. Watt
University of Western Ontario

Canada

Motivation
What is the shape of the results of the following expressions:

a · · · a
. . .

.

.

.

0 a

b · · · b
. . .

.

.

.

0 b

 = ?

Motivation
What is the shape of the results of the following expressions:

a · · · a
. . .

.

.

.

0 a

b · · · b
. . .

.

.

.

0 b

 =

[a, b] · · · [a, b]
. . .

.

.

.

0 [a, b]

Motivation
What is the shape of the results of the following expressions:

a · · · a
. . .

.

.

.

0 a

b · · · b
. . .

.

.

.

0 b

 =

[a, b] · · · [a, b]
. . .

.

.

.

0 [a, b]

a · · · a 0
. . .

.

.

.
a

b · · · b
. . .

.

.

.

0 b

2

= ?

Motivation
What is the shape of the results of the following expressions:

a · · · a
. . .

.

.

.

0 a

b · · · b
. . .

.

.

.

0 b

 =

[a, b] · · · [a, b]
. . .

.

.

.

0 [a, b]

a · · · a 0
. . .

.

.

.
a

b · · · b
. . .

.

.

.

0 b

2

=

[a] · · · [a] 0
. . .

.

.

.

[a]
[b] · · · [b]

. . .
.
.
.

0 [b]

Motivation

a11 · · · a1n 0
. . .

.

.

.
ann

b11 · · · b1m

. . .
.
.
.

0 bmm

c11 · · · c1m 0
. . .

.

.

.
cmm

d11 · · · d1n

. . .
.
.
.

0 dnn

=?

Motivation

a11 · · · a1n 0
. . .

.

.

.
ann

b11 · · · b1m

. . .
.
.
.

0 bmm

c11 · · · c1m 0
. . .

.

.

.
cmm

d11 · · · d1n

. . .
.
.
.

0 dnn

m = n :

[ac] · · · [ac] 0
. . .

.

.

.

[ac]
[bd] · · · [bd]

. . .
.
.
.

0 [bd]

Motivation

a11 · · · a1n 0
. . .

.

.

.
ann

b11 · · · b1m

. . .
.
.
.

0 bmm

c11 · · · c1m 0
. . .

.

.

.
cmm

d11 · · · d1n

. . .
.
.
.

0 dnn

m < n :

[ac] · · · [ac] [ad] · · · · · · · · · · · · [ad]
. . .

.

.

.
.
.
.

.

.

.

[ac]
.
.
.

.

.

.

[ad]
.
.
.

. . .
.
.
.

[ad] · · · · · · [ad]
[bd] · · · [bd]

. . .
.
.
.

0 [bd]

Motivation

a11 · · · a1n 0
. . .

.

.

.
ann

b11 · · · b1m

. . .
.
.
.

0 bmm

c11 · · · c1m 0
. . .

.

.

.
cmm

d11 · · · d1n

. . .
.
.
.

0 dnn

n < m :

[ac] · · · · · · · · · [ac] 0
. . .

.

.

.

[ac] · · · [ac]
[bc] · · · [bc] [bd] · · · [bd]

. . .
.
.
.

.

.

.
.
.
.

[bc]
.
.
.

.

.

.

[bd]
.
.
.

. . .
.
.
.

0 [bd]

Motivation

◮ Abstract Matrices are matrices that contain unspecified
components, such as ellipses or symbolic dimension

◮ We developed a parsing algorithm to make them available as
templates for symbolic computation [ISSAC 06]

◮ This talk: doing arithmetic with them

Motivation

◮ Abstract Matrices are matrices that contain unspecified
components, such as ellipses or symbolic dimension

◮ We developed a parsing algorithm to make them available as
templates for symbolic computation [ISSAC 06]

◮ This talk: doing arithmetic with them

◮ Choice of internal representation makes näıve evaluation
straightforward

Motivation

◮ Abstract Matrices are matrices that contain unspecified
components, such as ellipses or symbolic dimension

◮ We developed a parsing algorithm to make them available as
templates for symbolic computation [ISSAC 06]

◮ This talk: doing arithmetic with them

◮ Choice of internal representation makes näıve evaluation
straightforward

◮ Challenge is to recover region shapes of result
◮ Expose interactions between regions in the arithmetic
◮ Support investigation of properties of shaped matrices

Motivation

◮ Abstract Matrices are matrices that contain unspecified
components, such as ellipses or symbolic dimension

◮ We developed a parsing algorithm to make them available as
templates for symbolic computation [ISSAC 06]

◮ This talk: doing arithmetic with them

◮ Choice of internal representation makes näıve evaluation
straightforward

◮ Challenge is to recover region shapes of result
◮ Expose interactions between regions in the arithmetic
◮ Support investigation of properties of shaped matrices

◮ Compute with AMs, specialize results as unspecified elements
become known

Abstract Matrix

A =

a11 · · · a1n 0
. . .

.

.

.
ann

b11 · · · b1m

. . .
.
.
.

0 bmm

◮ Abstract matrices are composed of a set of regions

◮ Region shape is a closed convex polygonal area

◮ Region content is interpolated from a generalised term (a
term with unification variables)

aij if i , j ∈ {1 . . . n}

b(i−n),(j−n) if i , j ∈ {n + 1 . . . n + m}

0 otherwise

Half Plane Constraints

A =

a11 · · · a1n 0
. . .

.

.

.
ann

b11 · · · b1m

. . .
.
.
.

0 bmm

◮ Convex polygons represented as intersections of half planes

◮ Region shapes represented as conjunction of half plane
constraints

◮ Concave regions have to be decomposed into convex regions

j≤r1

j≥r1

i≤q1

q1, r1

q2, r1

q1, r2

q2, r1

q1, r2

i−q1≥(j−r1)

i−q1≤(j−r1)

q1, r1

q2, r2

q1, r1

i≥q1

(i−q1)+(j−r1)≤(q2−q1)

(i−q1)+(j−r1)≥(q2−q1)

Support Function

◮ Use support (or characteristic) functions to represent
half-plane contraints:

σ(x , y) ::=

{

1 if x 6 y

0 otherwise

We write σx ,y for convenience

◮ Conjunction of constraints ≡ product of support functions

◮ Restrict terms to regions by multiplying by products of σs

Expressing Abstract Matrices in σs

A =

a11 · · · a1n 0
. . .

.

.

.
ann

b11 · · · b1m

. . .
.
.
.

0 bmm

◮ Every region can be expressed as a product of σs and its
generalised term

◮ An Abstract Matrix is a sum of region terms

A = σ1,iσj ,nσi ,jaij + σn+1,iσj ,n+mσi ,jbi−n,j−n

where i , j are the index variables

Expressing Abstract Matrices in σs

A =

a11 · · · a1n 0
. . .

.

.

.
ann

b11 · · · b1m

. . .
.
.
.

0 bmm

◮ Every region can be expressed as a product of σs and its
generalised term

◮ An Abstract Matrix is a sum of region terms

A = [σ1,iσj ,nσi ,jaij + σn+1,iσj ,n+mσi ,jbi−n,j−n]
m+n,m+n
i ,j

Expressing Abstract Matrices in σs

A =

a11 · · · a1n 0
. . .

.

.

.
ann

b11 · · · b1m

. . .
.
.
.

0 bmm

◮ Every region can be expressed as a product of σs and its
generalised term

◮ An Abstract Matrix is a sum of region terms

A = [σ1,iσj ,nσi ,jaij + σn+1,iσj ,n+mσi ,jbi−n,j−n]
m+n,m+n
i ,j

◮ Note: region structure can be read directly (in this case)

Some properties of σ

σx ,x = 1 (1)

σx ,y = σx+z,y+z (2)

σx ,y = σ−y ,−x (3)

σx ,yσy ,x = 1 ⇔ x = y (4)

σy+1,xσx ,y = 0 (5)

Complement of a half-plain constraint:

σx ,y = σy ,x−1

Complement of a region:

σ1σ2 . . . σn = σ1 + σ2σ1 + σ3σ1σ2 + · · · + σnσ1σ2 . . . σn

Näıve Matrix Addition

◮ Abstract Matrix Addition is now simple (symbolic) addition

[ai ,j]
m,n
i ,j

+ [bi ,j]
m,n
i ,j

= [ai ,j + bi ,j]
m,n
i ,j

◮ Example:

UT =
[

u1, u2, . . . , uh, u
′

1, u
′

2, . . . , u
′

n−h

]

=
[

σj ,h uj + σh+1,j u′

j−h

]1,n

i ,j

V T =
[

v1, v2, . . . , vk , v ′

1, v
′

2, . . . , v
′

n−k

]

=
[

σj ,k vj + σk+1,j v ′

j−k

]1,n

i ,j

UT + V T =
[

σj ,h uj + σh+1,j u′

j−h + σj ,k vj + σk+1,j v ′

j−k

]1,n

i ,j

Näıve Matrix Addition

◮ Abstract Matrix Addition is now simple (symbolic) addition

[ai ,j]
m,n
i ,j

+ [bi ,j]
m,n
i ,j

= [ai ,j + bi ,j]
m,n
i ,j

◮ Example:

UT =
[

u1, u2, . . . , uh, u
′

1, u
′

2, . . . , u
′

n−h

]

=
[

σj ,h uj + σh+1,j u′

j−h

]1,n

i ,j

V T =
[

v1, v2, . . . , vk , v ′

1, v
′

2, . . . , v
′

n−k

]

=
[

σj ,k vj + σk+1,j v ′

j−k

]1,n

i ,j

UT + V T =
[

σj ,h uj + σh+1,j u′

j−h + σj ,k vj + σk+1,j v ′

j−k

]1,n

i ,j

◮ BUT: region structure is lost (because summands no longer
describe disjoint regions)

Matrix Addition: Recovering Structure

◮ Decompose into set of convex region terms so that every pair
is either disjoint or has the same shape and location

Matrix Addition: Recovering Structure

◮ Decompose into set of convex region terms so that every pair
is either disjoint or has the same shape and location

◮ use set theory (and region complement definition) to construct
a disjoint cover, and project each region onto the elements of
the cover

Matrix Addition: Recovering Structure

◮ Decompose into set of convex region terms so that every pair
is either disjoint or has the same shape and location

◮ use set theory (and region complement definition) to construct
a disjoint cover, and project each region onto the elements of
the cover

◮ Rewrite each region term into a simple structure so that the
full region shape information is easily extractible from the term

◮ Remove superfluous regions

◮ Simplify the region description part of the term

Matrix Addition: Recovering Structure

◮ Decompose into set of convex region terms so that every pair
is either disjoint or has the same shape and location

◮ use set theory (and region complement definition) to construct
a disjoint cover, and project each region onto the elements of
the cover

◮ Rewrite each region term into a simple structure so that the
full region shape information is easily extractible from the term

◮ Remove superfluous regions

◮ Simplify the region description part of the term

Matrix Multiplication

[ai ,j]
m,n
i ,j

[bi ,j]
n,p
i ,j

=

[

n
∑

k=1

ai ,kbk,j

]m,p

i ,j

Note: Multiplication introduces a syntactic summation operator

◮ Example:

UTV =

[

n
∑

l=1

(

σl ,h ul + σh+1,l u′

l−h

) (

σl ,k vl + σk+1,l v ′

l−k

)

]1,1

i ,j

=

[

n
∑

l=1

(

σl ,hσl ,k ulvl + σl ,hσk+1,l ulv
′

l−k +

σh+1,lσl ,k u′

l−hvl + σh+1,lσk+1,l u′

l−hv
′

l−k

)]1,1

i ,j

Matrix Multiplication Example

A =

a11 · · · a1n 0
.

.

.

.

.

.

ann

b11 · · · b1m

.

.

.

.

.

.

0 bmm

B =

c11 · · · c1m 0
.

.

.

.

.

.

cmm

d11 · · · d1n

.

.

.

.

.

.

0 dnn

A = [σj,nσi,j a + σn+1,iσi,j b]
n+m,n+m

i,j
B = [σj,mσi,j c + σm+1,iσi,j d]

m+n,m+n

i,j

AB =

n+m
∑

k=1

σk,nσi ,kσj ,mσk,j ac+

σk,nσi ,kσm+1,kσk,j ad+

σn+1,iσi ,kσj ,mσk,j bc+

σn+1,iσi ,kσm+1,kσk,j bd

n+m,n+m

i ,j

Key insight: σs involving the summation variable k do not
represent half plane constraints

Matrix Multiplication Example (cont.)

=

n+m
∑

k=1

σk,nσi ,kσj ,mσk,j ac +
n+m
∑

k=1

σk,nσi ,kσm+1,kσk,j ad+

n+m
∑

k=1

σn+1,iσi ,kσj ,mσk,j bc +
n+m
∑

k=1

σn+1,iσi ,kσm+1,kσk,j bd

n+m,n+m

i ,j

Matrix Multiplication Example (cont.)

=

n+m
∑

k=1

σk,nσi ,kσj ,mσk,j ac +
n+m
∑

k=1

σk,nσi ,kσm+1,kσk,j ad+

n+m
∑

k=1

σn+1,iσi ,kσj ,mσk,j bc +
n+m
∑

k=1

σn+1,iσi ,kσm+1,kσk,j bd

n+m,n+m

i ,j

Matrix Multiplication Example (cont.)

=

n+m
∑

k=1

σk,nσi ,kσj ,mσk,j ac +
n+m
∑

k=1

σk,nσi ,kσm+1,kσk,j ad+

n+m
∑

k=1

σn+1,iσi ,kσj ,mσk,j bc +
n+m
∑

k=1

σn+1,iσi ,kσm+1,kσk,j bd

n+m,n+m

i ,j

Matrix Multiplication Example (cont.)

=

n+m
∑

k=1

σk,nσi ,kσj ,mσk,j ac +
n+m
∑

k=1

σk,nσi ,kσm+1,kσk,j ad+

n+m
∑

k=1

σn+1,iσi ,kσj ,mσk,j bc +
n+m
∑

k=1

σn+1,iσi ,kσm+1,kσk,j bd

n+m,n+m

i ,j

For each summand we extract the full partial order defined by the
σ product, excluding terms involving k

ac ad bc bd
mn

j

k

i

k

i

n j

m+1

i

m

j

k

n+1

k

j

m+1i

n+1

σj ,mσi ,nσi ,j σi ,jσi ,nσm+1,j σn+1,iσi ,jσj ,m σn+1,iσi ,jσm+1,j

Multiplication Example (cont.)

σj ,mσi ,nσi ,j σi ,jσi ,nσm+1,j σn+1,iσi ,jσj ,m σn+1,iσi ,jσm+1,j

[ac] [ad] [bc] [bd]

Multiplication Example (cont.)

σj ,mσi ,nσi ,j σi ,jσi ,nσm+1,j σn+1,iσi ,jσj ,m σn+1,iσi ,jσm+1,j

[ac] [ad] [bc] [bd]

m = n :

[ac] · · · [ac] 0
. . .

.

.

.

[ac]
[bd] · · · [bd]

. . .
.
.
.

0 [bd]

Multiplication Example (cont.)

σj ,mσi ,nσi ,j σi ,jσi ,nσm+1,j σn+1,iσi ,jσj ,m σn+1,iσi ,jσm+1,j

[ac] [ad] [bc] [bd]

m < n :

[ac] · · · [ac] [ad] · · · · · · · · · · · · [ad]
. . .

.

.

.
.
.
.

.

.

.

[ac]
.
.
.

.

.

.

[ad]
.
.
.

. . .
.
.
.

[ad] · · · · · · [ad]
[bd] · · · [bd]

. . .
.
.
.

0 [bd]

Multiplication Example (cont.)

σj ,mσi ,nσi ,j σi ,jσi ,nσm+1,j σn+1,iσi ,jσj ,m σn+1,iσi ,jσm+1,j

[ac] [ad] [bc] [bd]

n < m :

[ac] · · · · · · · · · [ac] 0
. . .

.

.

.

[ac] · · · [ac]
[bc] · · · [bc] [bd] · · · [bd]

. . .
.
.
.

.

.

.
.
.
.

[bc]
.
.
.

.

.

.

[bd]
.
.
.

. . .
.
.
.

0 [bd]

Grammar

M ::= [F]iexp,iexp
var,var Γ ::= σiexp,iexp Γ | ǫ

F ::= R | R + F T ::= exp |

iexp
∑

var=1

(F) | F

R ::= Γ T | T
iexp ::= var | int | − iexp | iexp + iexp | iexp − iexp

var: a single variable name

int: a single, non-negative integer

exp: an arbitrary functional expression, that can contain
var and int terms.

The term for an Abstract Matrix thus has the form:

[M]m,n
i ,j = [R1 + · · · + Rk]m,n

i ,j = [Γ1T1 + · · · + ΓkTk]n,m
i ,j

Regular Form

We define a set of formal properties that the Abstract Matrix term
must have so that it the region structure is easily extractible from
it, the term is appropriately minimal and it can be used as input
arguments to further Abstract Matrix operations, hence ensuring
closure in the arithmetic:

◮ Disjoint

◮ Convex

◮ Γ-Partitioned

◮ Non-Empty

◮ Γ-Minimal

These properties are formally specified in terms of the grammar
and equations in the sigma functions.

Algorithms

ADD: Directly construct non-regularised addition result
term from input Abstract Matrices

◮ Result is Disjoint, Convex and Γ-Partitioned, but
not necessarily Non-Empty or Γ-Minimal

MULT: Directly construct non-regularised multiplication
result term from input Abstract Matrices

◮ Result is Disjoint and Convex, but not
necessarily Γ-Partitioned, Non-Empty or
Γ-Minimal

NORM: Rewrite an Abstract Matrix term that is Disjoint and
Convex into a Regular term

NORM

A 3-stage rewrite system with 4 sets of rules:

Stage 1: Transitive Closure creates all possible σ expressions that
can be read from the Hasse diagrams

Stage 2: Factoring factors single σs out of summations

Stage 3: Reduction reduces Γ expression by removing superflous σ

expressions.

The contraction rules can be applied during each stage for
simplification, but must always be exhaustively applied
We can prove correctness, termination and confluence

Conclusions

◮ Useful representation for symbolic representation of AMs

◮ Algorithms for addition and multiplication of AMs

◮ AMs are closed under these operations

◮ Operations propagate region structure information

◮ Proofs of correctness, termination and confluence

◮ Makes a contribution to a previously under-explored area of
symbolic and algebraic computation

