Solutions of Polynomial Systems Derived from the Steady Cavity Flow Problem

Martin Mevissen1 Kosuke Yokoyama2 Nobuki Takayama2

1Tokyo Institute of Technology
2Kobe University

ISSAC 2009, Seoul, Korea
The steady cavity flow problem

\[0 = \frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \omega}{\partial y^2} + \omega \quad \forall (x, y) \in [0, 1]^2, \]

\[0 = \frac{\partial \psi}{\partial x} \frac{\partial \omega}{\partial y} - \frac{\partial \psi}{\partial y} \frac{\partial \omega}{\partial x} + \frac{1}{R} \left(\frac{\partial^2 \omega}{\partial x^2} + \frac{\partial^2 \omega}{\partial y^2} \right) \quad \forall (x, y) \in [0, 1]^2. \]

Parameter \(R \) denotes the Reynolds number.

\[v_1 = \frac{\partial \psi}{\partial y}, \quad v_2 = -\frac{\partial \psi}{\partial x} \]
The steady cavity flow problem

\[0 = \frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \omega}{\partial y^2} + \omega \quad \forall (x, y) \in [0, 1]^2, \]

\[0 = \frac{\partial \psi}{\partial x} \frac{\partial \omega}{\partial y} - \frac{\partial \psi}{\partial y} \frac{\partial \omega}{\partial x} + \frac{1}{R} \left(\frac{\partial^2 \omega}{\partial x^2} + \frac{\partial^2 \omega}{\partial y^2} \right) \quad \forall (x, y) \in [0, 1]^2. \]

\[v_1 = \frac{\partial \psi}{\partial y}, \quad v_2 = -\frac{\partial \psi}{\partial x} \]

Parameter \(R \) denotes the Reynolds number.
The steady cavity flow problem

\[0 = \frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \omega}{\partial y^2} + \omega \quad \forall (x, y) \in [0, 1]^2, \]

\[0 = \frac{\partial \psi}{\partial x} \frac{\partial \omega}{\partial y} - \frac{\partial \psi}{\partial y} \frac{\partial \omega}{\partial x} + \frac{1}{R} \left(\frac{\partial^2 \omega}{\partial x^2} + \frac{\partial^2 \omega}{\partial y^2} \right) \quad \forall (x, y) \in [0, 1]^2. \]

Parameter \(R \) denotes the Reynolds number.

Discretize the steady cavity flow problem via a finite difference scheme!
Discretization yields

Discrete steady cavity flow problem DSCF(R,N)

\[-4\psi_{i,j} + \psi_{i+1,j} + \psi_{i-1,j} + \psi_{i,j+1} + \psi_{i,j-1} + h^2\omega_{i,j} = 0 \quad (i,j = 2, \ldots, N-1)\]
\[-4\omega_{i,j} + \omega_{i+1,j} + \omega_{i-1,j} + \omega_{i,j+1} + \omega_{i,j-1} + \frac{R}{4}(\psi_{i+1,j} - \psi_{i-1,j})(\omega_{i,j+1} - \omega_{i,j-1}) \quad = 0 \quad (i,j = 2, \ldots, N-1)\]
\[-\frac{R}{4}(\psi_{i,j+1} - \psi_{i,j-1})(\omega_{i+1,j} - \omega_{i-1,j}) = 0 \quad (i,j = 1, \ldots, N)\]
\[
\begin{align*}
\psi_{1,j} &= \psi_{N,j} = \psi_{i,1} = \psi_{i,N} \\
\omega_{1,j} &= -2\frac{\psi_{2,j}}{h^2}, \\
\omega_{N,j} &= -2\frac{\psi_{N-1,j}}{h^2}, \\
\omega_{i,1} &= -2\frac{\psi_{i,2}}{h^2}, \\
\omega_{i,N} &= -2\frac{\psi_{i,N-1+h}}{h^2}
\end{align*}
\]

Problem with two parameters R and N and dimension $n = 2(N - 2)^2$.
Discretization yields

Discrete steady cavity flow problem DSCF(R,N)

\[\begin{align*}
-4\psi_{i,j} + \psi_{i+1,j} + \psi_{i-1,j} + \psi_{i,j+1} + \psi_{i,j-1} + h^2\omega_{i,j} &= 0 \quad (i, j = 2, \ldots, N-1) \\
-4\omega_{i,j} + \omega_{i+1,j} + \omega_{i-1,j} + \omega_{i,j+1} + \omega_{i,j-1} + \frac{R}{4}(\psi_{i+1,j} - \psi_{i-1,j})(\omega_{i,j+1} - \omega_{i,j-1}) + \\
&\quad + \frac{R}{4}(\psi_{i,j+1} - \psi_{i,j-1})(\omega_{i+1,j} - \omega_{i-1,j}) &= 0 \quad (i, j = 2, \ldots, N-1) \\
\psi_{1,j} = \psi_{N,j} = \psi_{i,1} = \psi_{i,N}
\end{align*}\]

\[\begin{align*}
\omega_{1,j} &= -2\frac{\psi_{2,j}}{h^2}, \\
\omega_{N,j} &= -2\frac{\psi_{N-1,j}}{h^2}, \\
\omega_{i,1} &= -2\frac{\psi_{i,2}}{h^2}, \\
\omega_{i,N} &= -2\frac{\psi_{i,N-1+h}}{h^2}
\end{align*}\]

Problem with two parameters \(R \) and \(N \) and dimension \(n = 2(N - 2)^2 \).
Discretization yields

Discrete steady cavity flow problem DSCF(R,N)

\[-4\psi_{i,j} + \psi_{i+1,j} + \psi_{i-1,j} + \psi_{i,j+1} + \psi_{i,j-1} + h^2 \omega_{i,j}\]

\[-4\omega_{i,j} + \omega_{i+1,j} + \omega_{i-1,j} + \omega_{i,j+1} + \omega_{i,j-1} + \frac{R}{4}(\psi_{i+1,j} - \psi_{i-1,j})(\omega_{i,j+1} - \omega_{i,j-1})\]

\[= 0 \quad (i, j = 2, \ldots, N-1)\]

\[-\frac{R}{4}(\psi_{i,j+1} - \psi_{i,j-1})(\omega_{i+1,j} - \omega_{i-1,j})\]

\[= 0 \quad (i, j = 1, \ldots, N)\]

\[\psi_{1,j} = \psi_{N,j} = \psi_{i,1} = \psi_{i,N}\]

\[\omega_{1,j} = -2\frac{\psi_{2,j}}{h^2}, \quad \omega_{N,j} = -2\frac{\psi_{N-1,j}}{h^2}\]

\[\omega_{i,1} = -2\frac{\psi_{i,2}}{h^2}, \quad \omega_{i,N} = -2\frac{\psi_{i,N-1+h}}{h^2}\]

Problem with two parameters \(R\) and \(N\) and dimension \(n = 2(N - 2)^2\).

Conjecture

DSCF\((R, N)\) has finitely many complex solutions for any \(R\) and \(N\).
Discretization yields

Discrete steady cavity flow problem DSCF(R,N)

\[-4\psi_{i,j} + \psi_{i+1,j} + \psi_{i-1,j} + \psi_{i,j+1} + \psi_{i,j-1} + h^2\omega_{i,j} = 0 \quad (i,j = 2, \ldots, N-1)\]

\[-4\omega_{i,j} + \omega_{i+1,j} + \omega_{i-1,j} + \omega_{i,j+1} + \omega_{i,j-1} + \frac{R}{4}(\psi_{i+1,j} - \psi_{i-1,j})(\omega_{i,j+1} - \omega_{i,j-1}) - \frac{R}{4}(\psi_{i,j+1} - \psi_{i,j-1})(\omega_{i+1,j} - \omega_{i-1,j}) = 0 \quad (i,j = 2, \ldots, N-1)\]

\[\psi_1,j = \psi_{N,j} = \psi_{i,1} = \psi_{i,N}\]

\[\omega_1,j = -2\frac{\psi_{2,j}}{h^2}, \quad \omega_{N,j} = -2\frac{\psi_{N-1,j}}{h^2}\]

\[\omega_{i,1} = -2\frac{\psi_{i,2}}{h^2}, \quad \omega_{i,N} = -2\frac{\psi_{i,N-1+h}}{h^2}\]

Problem with two parameters \(R\) and \(N\) and dimension \(n = 2(N - 2)^2\).

Conjecture

DSCF\((R, N)\) has finitely many complex solutions for any \(R\) and \(N\).
Discretization yields

Discrete steady cavity flow problem DSCF(R,N)

\[-4\psi_{i,j} + \psi_{i+1,j} + \psi_{i-1,j} + \psi_{i,j+1} + \psi_{i,j-1} + h^2\omega_{i,j} = 0 \quad (i, j = 2, \ldots, N-1)\]

\[-4\omega_{i,j} + \omega_{i+1,j} + \omega_{i-1,j} + \omega_{i,j+1} + \omega_{i,j-1} + \frac{R}{4}(\psi_{i+1,j} - \psi_{i-1,j})(\omega_{i,j+1} - \omega_{i,j-1}) + \frac{R}{4}(\psi_{i,j+1} - \psi_{i,j-1})(\omega_{i+1,j} - \omega_{i-1,j}) = 0 \quad (i, j = 2, \ldots, N-1)\]

\[\psi_{1,j} = \psi_{N,j} = \psi_{1,1} = \psi_{i,N}\]

\[\omega_{1,j} = -2\frac{\psi_{2,j}}{h^2}, \quad \omega_{N,j} = -2\frac{\psi_{N-1,j}}{h^2}\]

\[\omega_{i,1} = -2\frac{\psi_{i,2}}{h^2}, \quad \omega_{i,N} = -2\frac{\psi_{i,N-1} + h}{h^2}\]

Problem with two parameters R and N and dimension $n = 2(N - 2)^2$.

Conjecture

DSCF(R, N) has finitely many complex solutions for any R and N.

Aim: Enumerate all solutions of DSCF(R, N) w.r.t. kinetic energy!
Outline

1. The discrete steady cavity flow problem

2. Sparse SDP relaxation method
 - Improving the accuracy of SDPR
 - Gröbner basis method and SDPR
 - Enumeration algorithm
 - Numerical results

3. Relations of Reynolds number R and $CF(R, N)$
Idea of our approach:

Apply the **sparse semidefinite program relaxations (SDPR)** to a polynomial optimization problem (POP) derived from DSCF\((R, N)\).
Sparse SDP relaxations for POP

Idea of our approach:
Apply the **sparse semidefinite program relaxations (SDPR)** to a polynomial optimization problem (POP) derived from DSCF(R, N).

An SDP in standard form

(P) \(\min \langle A_0, X \rangle \)

\[
\text{s.t.} \quad \langle A_i, X \rangle = b_i \quad (i = 1, \ldots, k) \\
X \succeq 0 \quad (X \text{ positive semidefinite})
\]

(D) \(\max \sum_{i=1}^{k} b_i y_i \)

\[
\text{s.t.} \quad A_0 - \sum_{i=1}^{k} A_i y_i \succeq 0
\]

\(A_0, \ldots, A_k, X \in S^n, b, y \in \mathbb{R}^k, \quad \langle G, H \rangle := \sum_{i,j} G_{i,j} H_{i,j} \).
Sparse SDP relaxations for POP

Idea of our approach:
Apply the \textit{sparse semidefinite program relaxations (SDPR)} to a polynomial optimization problem (POP) derived from DSCF(R, N).

An SDP in standard form

\begin{align*}
(P) \quad \min & \quad \langle A_0, X \rangle \\
\text{s.t.} & \quad \langle A_i, X \rangle = b_i \quad (i = 1, \ldots, k) \\
& \quad X \succeq 0 \quad (X \text{ positive semidefinite})
\end{align*}

\begin{align*}
(D) \quad \max & \quad \sum_{i=1}^{k} b_i y_i \\
\text{s.t.} & \quad A_0 - \sum_{i=1}^{k} A_i y_i \succeq 0
\end{align*}

$A_0, \ldots, A_k, X \in \mathbb{S}^n$, $b, y \in \mathbb{R}^k$, $\langle G, H \rangle := \sum_{i,j} G_{i,j} H_{i,j}$.

- If there exists \textit{interior feasible} (\bar{X}, \bar{y}), $\min(P) = \max(D)$ holds.
Sparse SDP relaxations for POP

Idea of our approach:

Apply the **sparse semidefinite program relaxations (SDPR)** to a polynomial optimization problem (POP) derived from DSCF(R, N).

An SDP in standard form

(P) \[
\begin{align*}
\min & \quad \langle A_0, X \rangle \\
s.t. & \quad \langle A_i, X \rangle = b_i \quad (i = 1, \ldots, k) \\
& \quad X \succeq 0 \\
\end{align*}
\]

(D) \[
\begin{align*}
\max & \quad \sum_{i=1}^{k} b_i y_i \\
s.t. & \quad A_0 - \sum_{i=1}^{k} A_i y_i \succeq 0 \\
\end{align*}
\]

If there exists **interior feasible** (\bar{X}, \bar{y}), $\min(P) = \max(D)$ holds.

(SDP) can be solved in poly time [Khachian 1979], efficiently by primal-dual interior point method [Nesterov, Nemirovski 1994].
Sparse SDP relaxations for POP

\begin{align*}
\text{min} & \quad F(x) \\
\text{s.t.} & \quad g_j(x) \geq 0 \quad \forall \ j \in \{1, \ldots, k\}, \\
& \quad h_i(x) = 0 \quad \forall \ i \in \{1, \ldots, l\}.
\end{align*}
Sparse POP can be approximated by a **hierarchy of sparse SDP relaxations** $\text{SDPR}(w)$ [Lasserre, Waki, Kim, Kojima].

\[
\begin{align*}
\min \quad F(x) \\
\text{s.t.} \quad g_j(x) &\geq 0 \quad \forall \ j \in \{1, \ldots, k\}, \\
\quad h_i(x) &= 0 \quad \forall \ i \in \{1, \ldots, l\}.
\end{align*}
\]

- \[\min(\text{SDPR}(w)) \rightarrow \min(\text{POP}), \text{ for } w \rightarrow \infty,\]
- holds if compactness conditions for $\text{feas}(\text{POP})$ are satisfied.
Sparse POP can be approximated by a hierarchy of sparse SDP relaxations $\text{SDPR}(w)$ [Lasserre, Waki, Kim, Kojima].

\[
\min(\text{SDPR}(w)) \rightarrow \min(\text{POP}), \quad \text{for } w \rightarrow \infty,
\]
holds if compactness conditions for $\text{feas}(\text{POP})$ are satisfied.

POP derived from PDE satisfy structured sparsity patterns [Mevissen, Kojima, Nie, Takayama].
Sparse POP can be approximated by a hierarchy of sparse SDP relaxations SDPR(\(w\)) [Lasserre, Waki, Kim, Kojima].

\[
\begin{align*}
\min & \quad F(x) \\
\text{s.t.} & \quad g_j(x) \geq 0 \quad \forall \, j \in \{1, \ldots, k\}, \quad h_i(x) = 0 \quad \forall \, i \in \{1, \ldots, l\}.
\end{align*}
\]

\[
\min(\text{SDPR}(w)) \rightarrow \min(\text{POP}), \text{ for } w \rightarrow \infty,
\]

holds if compactness conditions for feas(POP) are satisfied.

POP derived from PDE satisfy structured sparsity patterns [Mevissen, Kojima, Nie, Takayama].

Take DSCF(R,N) as constraints and choose an objective to obtain a POP!
An objective is needed to derive a POP:

Kinetic energy of the flow:
\[\int \int_{[0,1]^2} \left(\left(\frac{\partial \psi}{\partial y} \right)^2 + \left(\frac{\partial \psi}{\partial x} \right)^2 \right) \, dx \, dy \]

Discretize kinetic energy:

\[F(\psi, \omega) = \frac{1}{4} \sum_{2 \leq i,j \leq N-1} \left(\psi_{i+1,j} - \psi_{i-1,j} \right)^2 + \left(\psi_{i,j+1} - \psi_{i,j-1} \right)^2 \]
An objective is needed to derive a POP:

Kinetic energy of the flow: \[\int \int_{[0,1]^2} \left(\left(\frac{\partial \psi}{\partial y} \right)^2 + \left(\frac{\partial \psi}{\partial x} \right)^2 \right) \, dx \, dy \]

Discretize kinetic energy:

\[F(\psi, \omega) = \frac{1}{4} \sum_{2 \leq i, j \leq N-1} (\psi_{i+1,j} - \psi_{i-1,j})^2 + (\psi_{i,j+1} - \psi_{i,j-1})^2 \]

The cavity flow optimization problem \(\text{CF}(R, N) \)

\[
\begin{align*}
\text{min} & \quad F(\psi, \omega) \\
\text{s.t.} & \quad \text{DSCF}(R, N)
\end{align*}
\]
An objective is needed to derive a POP:

Kinetic energy of the flow:
\[
\int \int_{[0,1]^2} \left(\left(\frac{\partial \psi}{\partial y} \right)^2 + \left(\frac{\partial \psi}{\partial x} \right)^2 \right) \, dx \, dy
\]

Discretize kinetic energy:
\[
F(\psi, \omega) = \frac{1}{4} \sum_{2 \leq i, j \leq N-1} \left(\psi_{i+1,j} - \psi_{i-1,j} \right)^2 + \left(\psi_{i,j+1} - \psi_{i,j-1} \right)^2
\]

The cavity flow optimization problem \(CF(R, N) \)

\[
\begin{align*}
\text{min} & \quad F(\psi, \omega) \\
\text{s.t.} & \quad DSCF(R, N)
\end{align*}
\]

Proposition
An objective is needed to derive a POP:

Kinetic energy of the flow:

\[\int \int_{[0,1]^2} \left(\left(\frac{\partial \psi}{\partial y} \right)^2 + \left(\frac{\partial \psi}{\partial x} \right)^2 \right) \, dx \, dy \]

Discretize kinetic energy:

\[F(\psi, \omega) = \frac{1}{4} \sum_{2 \leq i, j \leq N-1} \left(\psi_{i+1,j} - \psi_{i-1,j} \right)^2 + \left(\psi_{i,j+1} - \psi_{i,j-1} \right)^2 \]

The cavity flow optimization problem CF(R, N)

\[\text{min} \quad F(\psi, \omega) \]
\[\text{s.t.} \quad \text{DSCF}(R, N) \]

Proposition

\(a) \quad \text{CF}(0, N) \text{ is a convex quadratic for any } N. \)
An objective is needed to derive a POP:

Kinetic energy of the flow:
\[\int \int_{[0,1]^2} \left((\frac{\partial \psi}{\partial y})^2 + (\frac{\partial \psi}{\partial x})^2 \right) \, dx \, dy \]

Discretize kinetic energy:
\[F(\psi, \omega) = \frac{1}{4} \sum_{2 \leq i,j \leq N-1} (\psi_{i+1,j} - \psi_{i-1,j})^2 + (\psi_{i,j+1} - \psi_{i,j-1})^2 \]

The cavity flow optimization problem \(\text{CF}(R, N) \)

\[\min \quad F(\psi, \omega) \]
\[\text{s.t.} \quad \text{DSCF}(R, N) \]

Proposition
a) \(\text{CF}(0, N) \) is a **convex quadratic** for any \(N \).
b) \(\text{CF}(R, N) \) is **non-convex quadratic** for any \(N \), if \(R \neq 0 \).
It can be shown that CF(R, N) satisfies a some structured sparsity pattern.

Figure: Chordal correlative sparsity pattern matrix for CF(R, 20)
It can be shown that CF(R, N) satisfies a some **structured sparsity** pattern.

Figure: Chordal correlative sparsity pattern matrix for CF($R, 20$)

Therefore, the **sparse SDP relaxations** [Waki et al.] are **efficient** to solve CF(R, N)!
It can be shown that $\text{CF}(R, N)$ satisfies a some structured sparsity pattern.

Therefore, the sparse SDP relaxations [Waki et al.] are efficient to solve $\text{CF}(R, N)$!

We will apply $\text{SDPR}(w)$ with order $w \in \{1, 2\}$.

Figure: Chordal correlative sparsity pattern matrix for $\text{CF}(R, 20)$
Outline

1. The discrete steady cavity flow problem

2. Sparse SDP relaxation method
 - Improving the accuracy of SDPR
 - Gröbner basis method and SDPR
 - Enumeration algorithm
 - Numerical results

3. Relations of Reynolds number R and $\text{CF}(R, N)$
How to improve the accuracy of SDPR

Problem

SDPR(1) and SDPR(2) may not yield accurate approximation to the global optimizers of CF(R, N).
How to improve the accuracy of SDPR

Problem

SDPR(1) and SDPR(2) may not yield accurate approximation to the global optimizers of CF(R, N).

Technique 1

Impose **tight lower and upper bounds** for all ψ_i and ω_i,

\[
\text{lbd}_i^\psi \leq \psi_i \leq \text{ubd}_i^\psi \quad \text{and} \quad \text{lbd}_i^\omega \leq \omega_i \leq \text{ubd}_i^\omega \quad \forall \ 1 \leq i \leq N^2.
\]
How to improve the accuracy of SDPR

Problem
SDPR(1) and SDPR(2) may not yield accurate approximation to the global optimizers of CF(R, N).

Technique 1
Impose tight lower and upper bounds for all ψ_i and ω_i,

$$\text{lbd}_i^\psi \leq \psi_i \leq \text{ubd}_i^\psi \quad \text{and} \quad \text{lbd}_i^\omega \leq \omega_i \leq \text{ubd}_i^\omega \quad \forall \; 1 \leq i \leq N^2.$$

Technique 2
Apply locally convergent optimization techniques like Newton’s method for nonlinear systems or sequential quadratic programming (SQP) starting from the SDPR(w) solution.
Combining these techniques yields

The SDPR method
Combining these techniques yields

The SDPR method

1. Choose the two parameters R and N.
Combining these techniques yields

The SDPR method

1. Choose the two parameters R and N.
2. Apply SDPR(w) to CF(R, N) and obtain solution $\tilde{u} := (\tilde{\psi}, \tilde{\omega})$.

Mevissen (Tokyo Tech) Solutions for Polynomial Systems ISSAC 2009 11 / 26
Combining these techniques yields

The SDPR method

1. Choose the two parameters R and N.
2. Apply SDPR(w) to CF(R, N) and obtain solution $\tilde{u} := (\tilde{\psi}, \tilde{\omega})$.
3. Apply sequential quadratic programming (SQP) to CF(R, N) or Newton’s method to DSCF(R, N), each of them starting from \tilde{u}, and obtain $u := (\psi, \omega)$.

Mevissen (Tokyo Tech) Solutions for Polynomial Systems ISSAC 2009 11 / 26
Outline

1. The discrete steady cavity flow problem

2. Sparse SDP relaxation method
 - Improving the accuracy of SDPR
 - Gröbner basis method and SDPR
 - Enumeration algorithm
 - Numerical results

3. Relations of Reynolds number R and $CF(R, N)$
Use Gröbner basis method to tune SDPR method and validate its numerical results!
Use **Gröbner basis method** to tune SDPR method and validate its numerical results!

Apply **rational univariate representation (RUR)** to DSCF($R, 5$):

Find all complex solutions of a system with 18 variables, 9 appear as linear and 9 appear as quadratic variables. Then, all real solutions can be enumerated w.r.t. their discretized kinetic energy.
Use **Gröbner basis method** to tune SDPR method and validate its numerical results!

Apply **rational univariate representation (RUR)** to DSCF($R, 5$):

Find all complex solutions of a system with 18 variables, 9 appear as linear and 9 appear as quadratic variables. Then, all real solutions can be enumerated w.r.t. their discretized kinetic energy.

Claim:

Results obtained by RUR for $N = 5$ can be used for tuning SDPR method for $N > 5$, too!
1. The discrete steady cavity flow problem

2. Sparse SDP relaxation method
 - Improving the accuracy of SDPR
 - Gröbner basis method and SDPR
 - Enumeration algorithm
 - Numerical results

3. Relations of Reynolds number R and $CF(R, N)$
Algorithm to enumerate all solutions of DSCF\((R, N)\)

Iterate the 5 steps to approximate the \(k\) smallest energy solutions:
Algorithm to enumerate all solutions of DSCF(R, N)

Iterate the 5 steps to approximate the k smallest energy solutions:

1. Given $u^{(k-1)}$, the approximation to the $(k - 1)$th smallest energy solution obtained by solving SDPR$^{k-1}(w)$.

Mevissen (Tokyo Tech) Solutions for Polynomial Systems ISSAC 2009 15 / 26
Algorithm to enumerate all solutions of DSCF(R, N)

Iterate the 5 steps to approximate the k smallest energy solutions:

1. Given $u^{(k-1)}$, the approximation to the $(k-1)$th smallest energy solution obtained by solving SDPR$_{k-1}(w)$.

2. Choose $\epsilon_1^k, \epsilon_2^k > 0$ and integers $b_1^k, b_2^k \in \{1, \ldots, (N-2)^2\}$.

Algorithm to enumerate all solutions of DSCF(R, N)

Iterate the 5 steps to approximate the k smallest energy solutions:

1. Given $u^{(k-1)}$, the approximation to the $(k - 1)$th smallest energy solution obtained by solving SDPR$^{k-1}(w)$.
2. Choose $\epsilon_k^1, \epsilon_k^2 > 0$ and integers $b_k^1, b_k^2 \in \{1, \ldots, (N - 2)^2\}$.
3. Add the following quadratic constraints to SDPR$^{k-1}(w)$ and denote the resulting (tighter) SDP relaxation as SDPR$^k(w)$.

\[
(u_j - u_j^{(k-1)})^2 \geq \epsilon_k^1 \quad \forall 1 \leq j \leq b_k^1, \\
(u_j + (N-2)^2 - u_j^{(k-1)})^2 \geq \epsilon_k^2 \quad \forall 1 \leq j \leq b_k^2.
\]
Algorithm to enumerate all solutions of DSCF(R,N)

Iterate the 5 steps to approximate the k smallest energy solutions:

1. Given $u^{(k-1)}$, the approximation to the $(k-1)$th smallest energy solution obtained by solving SDPR$^{k-1}(w)$.

2. Choose $\epsilon_1^k, \epsilon_2^k > 0$ and integers $b_1^k, b_2^k \in \{1, \ldots, (N-2)^2\}$.

3. Add the following quadratic constraints to SDPR$^{k-1}(w)$ and denote the resulting (tighter) SDP relaxation as SDPR$^k(w)$.

\begin{align}
(u_j - u_j^{(k-1)})^2 &\geq \epsilon_1^k & \forall 1 \leq j \leq b_1^k, \\
(u_{j+(N-2)^2} - u_{j+(N-2)^2}^{(k-1)})^2 &\geq \epsilon_2^k & \forall 1 \leq j \leq b_2^k.
\end{align}

4. Solve SDPR$^k(w)$ and obtain a first approximation $\tilde{u}^{(k)}$.

Mevissen (Tokyo Tech) Solutions for Polynomial Systems ISSAC 2009 15 / 26
Algorithm to enumerate all solutions of DSCF\((R, N)\)

Iterate the 5 steps to approximate the \(k\) smallest energy solutions:

1. Given \(u^{(k-1)}\), the approximation to the \((k-1)\)th smallest energy solution obtained by solving SDPR\(^{(k-1)}(w)\).

2. Choose \(\epsilon_1^k, \epsilon_2^k > 0\) and integers \(b_1^k, b_2^k \in \{1, \ldots, (N-2)^2\}\).

3. Add the following quadratic constraints to SDPR\(^{(k-1)}(w)\) and denote the resulting (tighter) SDP relaxation as SDPR\(^k(w)\).

\[
\begin{align*}
(u_j - u_j^{(k-1)})^2 &\geq \epsilon_1^k \quad \forall 1 \leq j \leq b_1^k, \\
(u_j + (N-2)^2 - u_j^{(k-1)})^2 &\geq \epsilon_2^k \quad \forall 1 \leq j \leq b_2^k.
\end{align*}
\]

4. Solve SDPR\(^k(w)\) and obtain a first approximation \(\tilde{u}^{(k)}\).

5. Apply Newton’s method or SQP with \(\tilde{u}^{(k)}\) as starting point. Obtain \(u^{(k)}\) as an approximation to \(u^{(k)*}\).
Algorithm to enumerate all solutions of DSCF\((R, N)\)

Iterate the 5 steps to approximate the \(k\) smallest energy solutions:

1. **Given** \(u^{(k-1)}\), the approximation to the \((k - 1)\)th smallest energy solution obtained by solving SDPR\(^{k-1}\)(\(w\)).
2. Choose \(\epsilon^k_1, \epsilon^k_2 > 0\) and integers \(b^k_1, b^k_2 \in \{1, \ldots, (N - 2)^2\}\).
3. Add the following quadratic constraints to SDPR\(^{k-1}\)(\(w\)) and denote the resulting (tighter) SDP relaxation as SDPR\(^k\)(\(w\)).

\[
\begin{align*}
(u_j - u_j^{(k-1)})^2 &\geq \epsilon^k_1 & \forall 1 \leq j \leq b^k_1, \\
(u_j + (N-2)^2 - u_j^{(k-1)})^2 &\geq \epsilon^k_2 & \forall 1 \leq j \leq b^k_2.
\end{align*}
\]

4. Solve SDPR\(^k\)(\(w\)) and obtain a first approximation \(\tilde{u}^{(k)}\).
5. Apply Newton’s method or SQP with \(\tilde{u}^{(k)}\) as starting point. Obtain \(u^{(k)}\) as an approximation to \(u^{(k)\ast}\).
Algorithm to enumerate all solutions of DSCF\((R, N)\)

Iterate the 5 steps to approximate the \(k\) smallest energy solutions:

1. Given \(u^{(k-1)}\), the approximation to the \((k - 1)\)th smallest energy solution obtained by solving SDPR\(^{k-1}(w)\).

2. Choose \(\epsilon_1^k, \epsilon_2^k > 0\) and integers \(b_1^k, b_2^k \in \{1, \ldots, (N - 2)^2\}\).

3. Add the following quadratic constraints to SDPR\(^{k-1}(w)\) and denote the resulting (tighter) SDP relaxation as SDPR\(^k(w)\).

\[
\begin{align*}
(u_j - u_j^{(k-1)})^2 &\geq \epsilon_1^k & \forall 1 \leq j \leq b_1^k, \\
(u_j + (N-2)^2 - u_j^{(k-1)})^2 &\geq \epsilon_2^k & \forall 1 \leq j \leq b_2^k.
\end{align*}
\tag{1}
\]

4. Solve SDPR\(^k(w)\) and obtain a first approximation \(\tilde{u}^{(k)}\).

5. Apply Newton’s method or SQP with \(\tilde{u}^{(k)}\) as starting point. Obtain \(u^{(k)}\) as an approximation to \(u^{(k)*}\).

Constraints (1) have shown to be superior to alternatives.
Proposition 2

Let R and N be fixed, $(u^{(1)}, \ldots, u^{(k-1)})$ be the output of the first $(k - 1)$ iterations. If this output is a sufficiently close approximation of $(u^{(1)}\star, \ldots, u^{(k-1)}\star)$, and if $\text{DSCF}(R, N)$ is finite and distinct in terms of F, i.e. $F(u^{(1)}\star) < F(u^{(2)}\star) < \ldots$, then there exist $b \in \{1, \ldots, n\}$ and $\epsilon \in \mathbb{R}^b$ such that $u^{(k)}$ from the kth iteration satisfies

$$u^{(k)}(w) \rightarrow u^{(k)}\star \text{ when } w \rightarrow \infty.$$
Convergence result for the enumeration algorithm

Proposition 2

Let R and N be fixed, $(u^{(1)}, \ldots, u^{(k-1)})$ be the output of the first $(k - 1)$ iterations. If this output is a sufficiently close approximation of $(u^{(1)*}, \ldots, u^{(k-1)*})$, and if $\text{DSCF}(R, N)$ is finite and distinct in terms of F, i.e. $F(u^{(1)*}) < F(u^{(2)*}) < \ldots$, then there exist $b \in \{1, \ldots, n\}$ and $\epsilon \in \mathbb{R}^b$ such that $u^{(k)}$ from the kth iteration satisfies

$$u^{(k)}(w) \to u^{(k)*} \quad \text{when } w \to \infty.$$

Proof: Apply of Lasserre’s theorem to sequence of POPs generated by the algorithm.
Proposition 2

Let R and N be fixed, $(u^{(1)}, \ldots, u^{(k-1)})$ be the output of the first $(k - 1)$ iterations. If this output is a sufficiently close approximation of $(u^{(1)}\ast, \ldots, u^{(k-1)}\ast)$, and if $DSCF(R, N)$ is finite and distinct in terms of F, i.e. $F(u^{(1)}\ast) < F(u^{(2)}\ast) < \ldots$, then there exist $b \in \{1, \ldots, n\}$ and $\epsilon \in \mathbb{R}^b$ such that $u^{(k)}$ from the kth iteration satisfies

$$u^{(k)}(w) \rightarrow u^{(k)}\ast \quad \text{when } w \rightarrow \infty.$$

Proof: Apply of Lasserre’s theorem to sequence of POPs generated by the algorithm.

But:

In numerical experiments we are restricted to $w \in \{1, 2\}$.
Proposition 2

Let R and N be fixed, $(u^{(1)}, \ldots, u^{(k-1)})$ be the output of the first $(k - 1)$ iterations. If this output is a sufficiently close approximation of $(u^{(1)*}, \ldots, u^{(k-1)*})$, and if $\text{DSCF}(R, N)$ is finite and distinct in terms of F, i.e. $F(u^{(1)*}) < F(u^{(2)*}) < \ldots$, then there exist $b \in \{1, \ldots, n\}$ and $\epsilon \in \mathbb{R}^b$ such that $u^{(k)}$ from the kth iteration satisfies

$$u^{(k)}(w) \to u^{(k)*} \quad \text{when} \quad w \to \infty.$$

Proof: Apply of Lasserre’s theorem to sequence of POPs generated by the algorithm.

But:

In numerical experiments we are restricted to $w \in \{1, 2\}$.
Convergence result for the enumeration algorithm

Proposition 2

Let R and N be fixed, $(u^{(1)}, \ldots, u^{(k-1)})$ be the output of the first $(k - 1)$ iterations. If this output is a sufficiently close approximation of $(u^{(1)*}, \ldots, u^{(k-1)*})$, and if $\text{DSCF}(R, N)$ is finite and distinct in terms of F, i.e. $F(u^{(1)*}) < F(u^{(2)*}) < \ldots$, then there exist $b \in \{1, \ldots, n\}$ and $\epsilon \in \mathbb{R}^b$ such that $u^{(k)}$ from the kth iteration satisfies

$$u^{(k)}(w) \rightarrow u^{(k)*} \quad \text{when} \quad w \rightarrow \infty.$$

Proof: Apply of Lasserre’s theorem to sequence of POPs generated by the algorithm.

But:

In numerical experiments we are restricted to $w \in \{1, 2\}$.

Use results from RUR for $N = 5$ to tune ϵ and b for $N \geq 5$.

Mevissen (Tokyo Tech) Solutions for Polynomial Systems ISSAC 2009 16 / 26
Outline

1. The discrete steady cavity flow problem

2. Sparse SDP relaxation method
 - Improving the accuracy of SDPR
 - Gröbner basis method and SDPR
 - Enumeration algorithm
 - Numerical results

3. Relations of Reynolds number R and $CF(R, N)$
Can verify by Gröbner basis method [RUR]:
\(u^{(0)}, u^{(1)}\) and \(u^{(2)}\) are indeed the 3 smallest energy solutions!
<table>
<thead>
<tr>
<th>k</th>
<th>w</th>
<th>ϵ^k_1</th>
<th>b^k_1</th>
<th>b^k_2</th>
<th>t_C</th>
<th>ϵ_{sc}</th>
<th>$F(u^{(k)})$</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>3e-7</td>
<td>3.4e-4</td>
<td>$u^{(0)}$</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1e-3</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>5e-4</td>
<td>3.4e-4</td>
<td>$u^{(0)}$</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1e-6</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>6e-6</td>
<td>3.4e-4</td>
<td>$u^{(0)}$</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1e-5</td>
<td>5</td>
<td>0</td>
<td>9</td>
<td>5e-6</td>
<td>5.9e-4</td>
<td>$u^{(1)}$</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1e-5</td>
<td>5</td>
<td>0</td>
<td>14</td>
<td>5e-6</td>
<td>5.2e-3</td>
<td>$u^{(2)}$</td>
</tr>
</tbody>
</table>

$CF(20000,7)$

$u^{(0)}$

$u^{(1)}$

$u^{(2)}$
Right choice for ϵ and b crucial!

<table>
<thead>
<tr>
<th>k</th>
<th>w</th>
<th>ϵ_1^k</th>
<th>b_1^k</th>
<th>b_2^k</th>
<th>t_C</th>
<th>ϵ_{sc}</th>
<th>$F(u^{(k)})$</th>
<th>solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>3e-7</td>
<td>3.4e-4</td>
<td>$u^{(0)}$</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1e-3</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>5e-4</td>
<td>3.4e-4</td>
<td>$u^{(0)}$</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1e-6</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>6e-6</td>
<td>3.4e-4</td>
<td>$u^{(0)}$</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1e-5</td>
<td>5</td>
<td>0</td>
<td>9</td>
<td>5e-6</td>
<td>5.9e-4</td>
<td>$u^{(1)}$</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1e-5</td>
<td>5</td>
<td>0</td>
<td>14</td>
<td>5e-6</td>
<td>5.2e-3</td>
<td>$u^{(2)}$</td>
</tr>
<tr>
<td>k</td>
<td>w</td>
<td>ϵ_1^k</td>
<td>b_1^k</td>
<td>b_2^k</td>
<td>t_C</td>
<td>ϵ_{sc}</td>
<td>$F(u^{(k)})$</td>
<td>solution</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>----------------</td>
<td>--------</td>
<td>--------</td>
<td>------</td>
<td>--------------</td>
<td>--------------</td>
<td>----------</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>2e-7</td>
<td>3.4e-4</td>
<td>$u^{(0)}(1)$</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>5e-6</td>
<td>5</td>
<td>0</td>
<td>7</td>
<td>6e-9</td>
<td>7.3e-4</td>
<td>$u^{(1)}(1)$</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>5e-6</td>
<td>5</td>
<td>0</td>
<td>11</td>
<td>3e-6</td>
<td>5.9e-4</td>
<td>$u^{(2)}(1)$</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>8e-6</td>
<td>5</td>
<td>0</td>
<td>16</td>
<td>5e-6</td>
<td>2.3e-4</td>
<td>$u^{(3)}(1)$</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5872</td>
<td>8e-10</td>
<td>2.6e-4</td>
<td>$u^{(0)}(2)$</td>
</tr>
</tbody>
</table>

Enumeration algorithm more efficient in approximating global minimizer than classical SDP relaxation!
1. The discrete steady cavity flow problem

2. Sparse SDP relaxation method
 - Improving the accuracy of SDPR
 - Gröbner basis method and SDPR
 - Enumeration algorithm
 - Numerical results

3. Relations of Reynolds number R and $\text{CF}(R, N)$
Observe: DSCF(R, N) is more difficult to solve for larger R.
Observe: DSCF(R, N) is more difficult to solve for larger R.

Question: How does u^* behave for increasing R?
Observe: DSCF(R, N) is more difficult to solve for larger R.

Question: How does u^* behave for increasing R?
Observe: DSCF(R, N) is more difficult to solve for larger R.

Question: How does u^* behave for increasing R?

Compare the SDPR method results with Naive homotopy-like continuation method.
Observe: DSCF(R, N) is more difficult to solve for larger R.

Question: How does u^* behave for increasing R?

Compare the SDPR method results with Naive homotopy-like continuation method

1. Choose R', N and a step size ΔR.
Observe: DSCF(R, N) is more difficult to solve for larger R.

Question: How does u^* behave for increasing R?

Compare the SDPR method results with

Naive homotopy-like continuation method

1. Choose R', N and a step size ΔR.
2. Solve DSCF(0, N) and obtain its unique solution u^0.
Observe: DSCF\((R, N)\) is more difficult to solve for larger \(R\).

Question: How does \(u^*\) behave for increasing \(R\)?

Compare the SDPR method results with Naive homotopy-like **continuation method**

1. Choose \(R', N\) and a step size \(\Delta R\).
2. Solve DSCF\((0, N)\) and obtain its unique solution \(u^0\).
3. Increase \(R^{k-1}: R^k = R^{k-1} + \Delta R\)
Observe: DSCF(R, N) is more difficult to solve for larger R.

Question: How does \(u^* \) behave for increasing \(R \)?

Compare the SDPR method results with Naive homotopy-like continuation method

1. **Choose** \(R', N \) and a step size \(\Delta R \).
2. Solve DSCF(0, N) and obtain its unique solution \(u^0 \).
3. Increase \(R^{k-1} \): \(R^k = R^{k-1} + \Delta R \)
4. Apply Newton’s method to DSCF(\(R^k \), N) starting from \(u^{k-1} \). Obtain solution \(u^k \) as an approximation to a solution of DSCF(\(R^k \), N).
Minimal kinetic energy solution for increasing R

Observe: DSCF(R, N) is more difficult to solve for larger R.

Question: How does u^* behave for increasing R?

Compare the SDPR method results with Naive homotopy-like continuation method

1. Choose R', N and a step size ΔR.
2. Solve DSCF(0, N) and obtain its unique solution u^0.
3. Increase R^{k-1}: $R^k = R^{k-1} + \Delta R$
4. Apply Newton’s method to DSCF(R^k, N) starting from u^{k-1}.
 Obtain solution u^k as an approximation to a solution of DSCF(R^k, N).
5. Iterate 3. and 4. until the desired Reynold’s number R' is reached.
Minimal kinetic energy solution for increasing R

Observe: DSCF(R, N) is more difficult to solve for larger R.

Question: How does u^* behave for increasing R?

Compare the SDPR method results with

Naive homotopy-like continuation method

1. Choose R', N and a step size ΔR.
2. Solve DSCF(0, N) and obtain its unique solution u^0.
3. Increase R^{k-1}: $R^k = R^{k-1} + \Delta R$
4. Apply Newton’s method to DSCF(R^k, N) starting from u^{k-1}. Obtain solution u^k as an approximation to a solution of DSCF(R^k, N).
5. Iterate 3. and 4. until the desired Reynold’s number R' is reached.
Observe: DSCF(R, N) is more difficult to solve for larger R.

Question: How does u^* behave for increasing R?

Compare the SDPR method results with Naive homotopy-like continuation method

1. Choose R', N and a step size ΔR.
2. Solve DSCF($0, N$) and obtain its unique solution u^0.
3. Increase R^{k-1}: $R^k = R^{k-1} + \Delta R$
4. Apply Newton's method to DSCF(R^k, N) starting from u^{k-1}. Obtain solution u^k as an approximation to a solution of DSCF(R^k, N).
5. Iterate 3. and 4. until the desired Reynold's number R' is reached.

Continuation method is not guaranteed to find the minimizer of F!
<table>
<thead>
<tr>
<th>R</th>
<th>N_C</th>
<th>N_R</th>
<th>E_C</th>
<th>$E_{SDPR(1)}$</th>
<th>$E_{SDPR(2)}$</th>
<th>E_{min}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0.0096</td>
<td>0.0096</td>
<td>0.0096</td>
<td>0.0096</td>
</tr>
<tr>
<td>100</td>
<td>37</td>
<td>13</td>
<td>0.0030</td>
<td>0.0030</td>
<td>0.0030</td>
<td>0.0030</td>
</tr>
<tr>
<td>500</td>
<td>37</td>
<td>13</td>
<td>6.2e-4</td>
<td>6.2e-4</td>
<td>6.2e-4</td>
<td>6.2e-4</td>
</tr>
<tr>
<td>1000</td>
<td>37</td>
<td>13</td>
<td>5.4e-4</td>
<td>5.0e-4</td>
<td>5.0e-4</td>
<td>5.0e-4</td>
</tr>
<tr>
<td>2000</td>
<td>37</td>
<td>13</td>
<td>6.2e-4</td>
<td>6.2e-4</td>
<td>6.2e-4</td>
<td>6.2e-4</td>
</tr>
<tr>
<td>4000</td>
<td>37</td>
<td>17</td>
<td>6.3e-4</td>
<td>4.6e-4</td>
<td>4.6e-4</td>
<td>4.6e-4</td>
</tr>
<tr>
<td>6000</td>
<td>36</td>
<td>16</td>
<td>5.7e-4</td>
<td>4.5e-4</td>
<td>4.5e-4</td>
<td>4.5e-4</td>
</tr>
<tr>
<td>10000</td>
<td>35</td>
<td>17</td>
<td>4.7e-4</td>
<td>4.5e-4</td>
<td>4.5e-4</td>
<td>4.5e-4</td>
</tr>
<tr>
<td>20000</td>
<td>35</td>
<td>17</td>
<td>4.5e-4</td>
<td>4.5e-4</td>
<td>3.3e-4</td>
<td>3.3e-4</td>
</tr>
<tr>
<td>30000</td>
<td>35</td>
<td>17</td>
<td>4.5e-4</td>
<td>4.5e-4</td>
<td>2.5e-4</td>
<td>2.5e-4</td>
</tr>
<tr>
<td>100000</td>
<td>34</td>
<td>16</td>
<td>4.5e-4</td>
<td>4.5e-4</td>
<td>8.8e-5</td>
<td>8.8e-5</td>
</tr>
</tbody>
</table>
CF(R,5)

<table>
<thead>
<tr>
<th>R</th>
<th>N_C</th>
<th>N_R</th>
<th>E_C</th>
<th>$E_{SDPR(1)}$</th>
<th>$E_{SDPR(2)}$</th>
<th>E_{min}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0.0096</td>
<td>0.0096</td>
<td>0.0096</td>
<td>0.0096</td>
</tr>
<tr>
<td>100</td>
<td>37</td>
<td>13</td>
<td>0.0030</td>
<td>0.0030</td>
<td>0.0030</td>
<td>0.0030</td>
</tr>
<tr>
<td>500</td>
<td>37</td>
<td>13</td>
<td>6.2e-4</td>
<td>6.2e-4</td>
<td>6.2e-4</td>
<td>6.2e-4</td>
</tr>
<tr>
<td>1000</td>
<td>37</td>
<td>13</td>
<td>5.4e-4</td>
<td>5e-4</td>
<td>5e-4</td>
<td>5e-4</td>
</tr>
<tr>
<td>2000</td>
<td>37</td>
<td>13</td>
<td>6.2e-4</td>
<td>6.2e-4</td>
<td>6.2e-4</td>
<td>6.2e-4</td>
</tr>
<tr>
<td>4000</td>
<td>37</td>
<td>17</td>
<td>6.3e-4</td>
<td>4.6e-4</td>
<td>4.6e-4</td>
<td>4.6e-4</td>
</tr>
<tr>
<td>6000</td>
<td>36</td>
<td>16</td>
<td>5.7e-4</td>
<td>4.5e-4</td>
<td>4.5e-4</td>
<td>4.5e-4</td>
</tr>
<tr>
<td>10000</td>
<td>35</td>
<td>17</td>
<td>4.7e-4</td>
<td>4.5e-4</td>
<td>4.5e-4</td>
<td>4.5e-4</td>
</tr>
<tr>
<td>20000</td>
<td>35</td>
<td>17</td>
<td>4.5e-4</td>
<td>4.5e-4</td>
<td>3.3e-4</td>
<td>3.3e-4</td>
</tr>
<tr>
<td>30000</td>
<td>35</td>
<td>17</td>
<td>4.5e-4</td>
<td>4.5e-4</td>
<td>2.5e-4</td>
<td>2.5e-4</td>
</tr>
<tr>
<td>100000</td>
<td>34</td>
<td>16</td>
<td>4.5e-4</td>
<td>4.5e-4</td>
<td>8.8e-5</td>
<td>8.8e-5</td>
</tr>
</tbody>
</table>

SDPR(1) yields the min energy solution for $R \leq 10000$, SDPR(2) yields min energy solution for all R.

Mevisessen (Tokyo Tech) Solutions for Polynomial Systems ISSAC 2009 23 / 26
CF(R,5)
$CF(R,5)$

$u_C(R)$ is not the minimum energy solution!
\(u_C(R) \) is not the minimum energy solution!

\(u^*(R) \) is obtained by SDPR(2) and \(E_{\text{min}}(R) \) tends to 0!
- $u_C(R)$ is not the minimum energy solution!
- $u^*(R)$ is obtained by SDPR(2) and $E_{\text{min}}(R)$ tends to 0!
- Similar behavior can be observed for $N \in \{6, 7\}$.
Behavior for increasing R
Behavior for increasing R

Conjecture

(a) $F(u_0(N)) = E_{\text{min}}(0, N) \geq E_{\text{min}}(R, N) \geq 0 \quad \forall R \geq 0.$
Behavior for increasing R

Conjecture

a) $F(u_0(N)) = E_{\text{min}}(0, N) \geq E_{\text{min}}(R, N) \geq 0 \quad \forall R \geq 0$.

b) $E_{\text{min}}(R, N) \to 0$ for $R \to \infty$.
Behavior for increasing R

Conjecture

a) $F(u_0(N)) = E_{\text{min}}(0, N) \geq E_{\text{min}}(R, N) \geq 0 \quad \forall R \geq 0.$

b) $E_{\text{min}}(R, N) \to 0$ for $R \to \infty.$

a) can be used as a certificate for non-optimality of a solution $u'(R, N)$, if $F(u'(R, N)) > E_{\text{min}}(0, N).$
Behavior for increasing R

Conjecture

\begin{itemize}
\item[a)] $F(u_0(N)) = E_{\text{min}}(0, N) \geq E_{\text{min}}(R, N) \geq 0 \quad \forall R \geq 0.$
\item[b)] $E_{\text{min}}(R, N) \to 0$ for $R \to \infty.$
\end{itemize}

- a) can be used as a certificate for non-optimality of a solution $u'(R, N)$, if $F(u'(R, N)) > E_{\text{min}}(0, N)$.
- In the case $u_0(N)$ can be continued to $\tilde{u}(R, N)$, $u'(R, N)$ is non-optimal if $F(u'(R, N)) > F(\tilde{u}(R, N))$.

Min energy solution can be found for many R with SDPR(1) or SDPR(2).
Summary

- Min energy solution can be found for many R with SDPR(1) or SDPR(2).
- Algorithm for approximately enumerating all solutions of a polynomial system one by one.
Summary

- Min energy solution can be found for many R with SDPR(1) or SDPR(2).
- Algorithm for approximately enumerating all solutions of a polynomial system one by one.
- Convergence result.
Min energy solution can be found for many R with SDPR(1) or SDPR(2).

Algorithm for approximately enumerating all solutions of a polynomial system one by one.

Convergence result.

Discrete steady cavity flow problem for large R is a challenging test problem for new solvers in numerical algebra.
Min energy solution can be found for many R with SDPR(1) or SDPR(2).

Algorithm for approximately enumerating all solutions of a polynomial system one by one.

Convergence result.

Discrete steady cavity flow problem for large R is a challenging test problem for new solvers in numerical algebra.

Future Research
Summary

- Min energy solution can be found for many R with SDPR(1) or SDPR(2).
- Algorithm for approximately enumerating all solutions of a polynomial system one by one.
- Convergence result.
- Discrete steady cavity flow problem for large R is a challenging test problem for new solvers in numerical algebra.

Future Research
- Systematic procedure to determine ϵ and b.
Summary

- Min energy solution can be found for many R with SDPR(1) or SDPR(2).
- Algorithm for approximately enumerating all solutions of a polynomial system one by one.
- Convergence result.
- Discrete steady cavity flow problem for large R is a challenging test problem for new solvers in numerical algebra.

Future Research
- Systematic procedure to determine ϵ and b.
- Prove Conjectures.
Summary

- Min energy solution can be found for many R with SDPR(1) or SDPR(2).
- Algorithm for approximately enumerating all solutions of a polynomial system one by one.
- Convergence result.
- Discrete steady cavity flow problem for large R is a challenging test problem for new solvers in numerical algebra.

Future Research

- Systematic procedure to determine ϵ and b.
- Prove Conjectures.
- Apply alternative difference scheme to keep physical invariants under discretization.
Summary

- Min energy solution can be found for many R with SDPR(1) or SDPR(2).
- Algorithm for approximately enumerating all solutions of a polynomial system one by one.
- Convergence result.
- Discrete steady cavity flow problem for large R is a challenging test problem for new solvers in numerical algebra.

Future Research

- Systematic procedure to determine ϵ and b.
- Prove Conjectures.
- Apply alternative difference scheme to keep physical invariants under discretization.
- Consider linear instead of quadratic constraints in enumeration algorithm to improve stability.