Fast arithmetics in Artin-Schreier towers over finite fields

L. De Feo1 and É. Schost2

1École Polytechnique and INRIA, France
2ORCCA and CSD, The University of Western Ontario, London, ON

July 31, 2009
ISSAC, Seoul, Korea
From crypto to computer algebra

\[\mathbb{U}_k \rightarrow - - E[p^k] \]

\[p \]

\[\mathbb{U}_{k-1} \rightarrow - - E[p^{k-1}] \]

\[p \]

\[\mathbb{U}_2 \rightarrow - - E[p^2] \]

\[p \]

\[\mathbb{U}_1 \rightarrow - - E[p] \]

\[\mathbb{F}_q \]

\[p^k \]-torsion points of elliptic curves

\[E : y^2 = x^3 + ax + b \quad a, b \in \mathbb{F}_q \]

\[p^k \]-torsion points are not necessarily defined in the base field. We want to:

- compute primitive \(p^k \)-torsion points,
- apply Galois actions on them,
- evaluate maps between elliptic curves,
- ...

Applications

- Isogeny computation [Couveignes '96].
- \(p \)-torsion points of generic abelian varieties;
Definition (Artin-Schreier polynomial)

For a field K of characteristic p, $\alpha \in K$,

$$X^p - X - \alpha$$

is an Artin-Schreier polynomial.

Theorem

If K is finite, $X^p - X - \alpha$ irreducible \iff $\text{Tr}_{K/F_p}(\alpha) \neq 0$.

If $\eta \in K$ is a root, then $\eta + 1, \ldots, \eta + (p - 1)$ are roots.

Definition (Artin-Schreier extension)

If \mathcal{P} is an irreducible Artin-Schreier polynomial, $\mathbb{L} = \mathbb{K}[X]/\mathcal{P}(X)$.

L/K is called an Artin-Schreier extension.
Our context

\[U_k = \frac{U_{k-1}[X_k]}{P_{k-1}(X_k)} \]

\[U_1 = \frac{U_0[X_1]}{P_0(X_1)} \]

\[U_0 = \mathbb{F}_{p^d} = \frac{\mathbb{F}_p[X_0]}{Q(X_0)} \]

Towers over finite fields

\[P_i = X^p - X - \alpha_i \]

We say that \((U_0, \ldots, U_k)\) is defined by \((\alpha_0, \ldots, \alpha_{k-1})\) over \(U_0\).

ANY separable extension of degree \(p\) can be expressed this way.
Size, complexities

\[\#U_i = p^{p^i} \]

Optimal representation

All common representations achieve it: \(O(p^i d) \)

Complexities

<table>
<thead>
<tr>
<th>Type</th>
<th>Complexity</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>optimal</td>
<td>(O(p^i d))</td>
<td>addition</td>
</tr>
<tr>
<td>quasi-optimal</td>
<td>(\tilde{O}(i^a p^i d))</td>
<td>FFT multiplication</td>
</tr>
<tr>
<td>almost-optimal</td>
<td>(\tilde{O}(i^a p^{i+b} d))</td>
<td></td>
</tr>
<tr>
<td>suboptimal</td>
<td>(\tilde{O}(i^a p^{i+b} d^c))</td>
<td>naive multiplication</td>
</tr>
<tr>
<td>too bad</td>
<td>(\tilde{O}(i^a (p^{i+b})^{e} d^c))</td>
<td></td>
</tr>
</tbody>
</table>

Multiplication function \(M(n) \)

FFT: \(M(n) = O(n \log n \log \log n) \),
Naive: \(M(n) = O(n^2) \).
Outline

1. Representation
2. Arithmetics
3. Implementation and benchmarks
Representation matters!

Multivariate representation of \(v \in \mathbb{U}_i \)

\[
v = X_0^{d-1}X_1^{p-1} \cdots X_i^{p-1} + 2X_0^{d-1}X_1^{p-1} \cdots X_i^{p-2} + \cdots
\]

Univariate representation of \(v \in \mathbb{U}_i \)

- \(\mathbb{U}_i = \mathbb{F}_p[x_i] \),
- \(v = c_0 + c_1x_i + c_2x_i^2 + \cdots + c_{p^id-1}x_i^{p^id-1} \) with \(c_i \in \mathbb{F}_p \).

How much does it cost to...

- Multiply?
- Express the embedding \(\mathbb{U}_{i-1} \subset \mathbb{U}_i \)?
- Express the vector space isomorphism \(\mathbb{U}_i = \mathbb{U}_i^{p-1} \)?
- Switch between the representations?
A primitive tower

Definition (Primitive tower)

A tower is primitive if \(U_i = \mathbb{F}_p[X_i] \).

In general this is not the case. Think of \(P_0 = X^p - X - 1 \).

Theorem (extends a result in [Cantor ’89])

Let \(x_0 = X_0 \) such that \(\text{Tr}_{U_0/\mathbb{F}_p}(x_0) \neq 0 \), let

\[
\begin{align*}
P_0 &= X^p - X - x_0 \\
P_i &= X^p - X - x_i^{2^{p-1}}
\end{align*}
\]

with \(x_{i+1} \) a root of \(P_i \) in \(U_{i+1} \).

Then, the tower defined by \((P_0, \ldots, P_{k-1})\) is primitive.

Some tricks to play when \(p = 2 \).
Computing the minimal polynomials

We look for Q_i, the minimal polynomial of x_i over \mathbb{F}_p

Algorithm [Cantor ’89]

- $Q_0 = Q$
- $Q_1 = Q_0(X^p - X)$

Let ω be a $2p - 1$-th root of unity,

- $q_{i+1}(X^{2p-1}) = \prod_{j=0}^{2p-2} Q_i(\omega^j X)$
- $Q_{i+1} = q_{i+1}(X^p - X)$

Complexity

$O(M(p^{i+2}d) \log p)$
Outline

1 Representation

2 Arithmetics

3 Implementation and benchmarks
Level embedding

Push-down

Input \(v \in \mathbb{U}_i \),

Output \(v_0, \ldots, v_{p-1} \in \mathbb{U}_{i-1} \) such that \(v = v_0 + \cdots + v_{p-1}x_i^{p-1} \).

Lift-up

Input \(v_0, \ldots, v_{p-1} \in \mathbb{U}_{i-1} \),

Output \(v \in \mathbb{U}_i \) such that \(v = v_0 + \cdots + v_{p-1}x_i^{p-1} \).

Complexity function \(L(i) \)

It turns out that the two operations lie in the same complexity class, we note \(L(i) \) for it:

\[
L(i) = O (pM(p^i d) + p^{i+1} d \log_p (p^i d)^2)
\]
Level embedding

Change of order

\[
\begin{align*}
X_i^p - X_i - X_{i-1}^{2p-1} &= 0 \\
Q_{i-1}(X_{i-1}) &= 0
\end{align*}
\quad \leftrightarrow \quad
\begin{align*}
Q_i(X_i) &= 0 \\
X_{i-1} &= R(X_i)/S(X_i)
\end{align*}
\]

Rational Univariate Representation ([Rouillier '99])

- Push-down: left-to-right,
- Lift-up: right-to-left,
- Going right-to-left = looking for RUR,
- Equivalently, changing order from $X_{i-1} > X_i$ to $X_i > X_{i-1}$.
- Many optimisations for our case.
Push-down

Input $v \vdash U_i$,
Output $v_0, \ldots, v_{p-1} \vdash U_{i-1}$ s.t. $v = v_0 + \cdots + v_{p-1} x_i^{p-1}$.

1. Reduce v modulo $x_i^p - x_i - x_{i-1}^{2p-1}$ by a divide-and-conquer approach,
2. each of the coefficients of x_i has degree in x_{i-1} less than $2 \deg_{x_i}(v)$,
3. reduce each of the coefficients.
Lift-up

Power projection

Let x be fixed. An algorithm that takes a linear form ℓ as input and outputs

$$\ell(1), \ell(x), \ldots, \ell(x^n)$$

is said to solve *power projection* problem ([Shoup '99]).

Trace formulas [Pascal and Schost '06, Rouillier '99]

- Given $v_0, \ldots, v_{p-1} \in U_{i-1}$,
- $v = v_0 + \cdots + v_{p-1} x_i^{p-1}$ can be recovered using suitable trace formulas.
- Solving them is the power projection problem on input $v \cdot \text{Tr} : x \mapsto \text{Tr}(vx)$.

Transposed algorithms (see [Bürgisser, Clausen and Shokrollahi '97])

- *Linear algorithms* can be *transposed* much like linear applications;
- Computing $v \cdot \text{Tr}$ is *transposed multiplication*.
- Computing the power projection for x_i is *transposed push-down*.
Lift-up

\textbf{Input} \quad v_0, \ldots, v_{p-1} \rightarrow U_{i-1}

\textbf{Output} \quad v \rightarrow U_i \quad \text{s.t.} \quad v = v_0 + \cdots + v_{p-1} x_i^{p-1}

1. Compute the linear form \(\text{Tr} \in U_i^{D^*} \),
2. compute \(\ell = (v_0 + \cdots + v_{p-1} x_i^{p-1}) \cdot \text{Tr} \),
3. compute \(P_v = \text{Push-down}^T(\ell) \),
4. compute \(N_v(Z) = P_v(Z) \cdot \text{rev}(Q_i)(Z) \mod Z^{p^i d - 1} \),
5. return \(\text{rev}(N_v)/Q'_i \mod Q_i \).
Speeding up some arithmetics

Divide and conquer

\[\mathbb{U}_k \]
\[\mathbb{U}_{k-1} \]
\[\mathbb{U}_1 \]
\[\mathbb{U}_0 \]

We improve some operations in \(\mathbb{U}_i \) \(\text{op}(v) \)

Where it works

- traces,
- \(p \)-th roots,
- pseudotrace,
- inversion,
- iterated frobenius,
- ...
Speeding up some arithmetics

Divide and conquer

We improve some operations in U_i

- push-down the operands;

$$\text{op}(v) \quad v_0, \ldots, v_{p-1}$$

Where it works

- traces,
- p-th roots,
- pseudotraces,
- inversion,
- iterated frobenius,
- ...
Speeding up some arithmetics

Divide and conquer

We improve some operations in \mathbb{U}_i

- push-down the operands;
- recursively solve p instances in \mathbb{U}_{i-1};

\[\text{op}(v) \]
\[\text{op}(v_0), \ldots, \text{op}(v_{p-1}) \]

Where it works

- traces,
- p-th roots,
- pseudotrases,
- inversion,
- iterated frobenius,
- \ldots
Speeding up some arithmetics

Divide and conquer

We improve some operations in \mathbb{U}_i

- push-down the operands;
- recursively solve p instances in \mathbb{U}_{i-1};
- combine the results;

\mathbb{U}_k \hspace{2cm} \mathbb{U}_{k-1} \hspace{2cm} \mathbb{U}_1 \hspace{2cm} \mathbb{U}_0

Where it works

- traces,
- p-th roots,
- pseudotraces,
- inversion,
- iterated frobenius,
- ...
Speeding up some arithmetics

Divide and conquer

We improve some operations in \mathbb{U}_i

- push-down the operands;
- recursively solve p instances in \mathbb{U}_{i-1};
- combine the results;
- lift-up.

$$op(v) \quad op(v_0), \ldots, \quad op(v_{p-1})$$

$$w_0, \ldots, \quad w_{p-1}$$

$$w$$

Where it works

- traces,
- p-th roots,
- pseudotraces,
- inversion,
- iterated frobenius,
- ...
Important application: Isomorphisms with generic towers

Generic towers
- Let \((\alpha_0, \ldots, \alpha_{k-1})\) define a generic tower over \(U_0\).
- if we find an isomorphism we can bring fast arithmetics to it.

Computing the isomorphism [Couveignes ’00]

Goal: factor \(X^p - X - \alpha_i\) in \(U_{i+1}\).
- Change of variables \(X' = X - \mu\) s.t.
- \(X'^p - X' - \alpha_i\) has a root in \(U_i\).
- Push-down, solve recursively, result is \(\Delta\),
- Lift-up \(\Delta\),
- return \(\Delta + \mu\).
Outline

1 Representation

2 Arithmetics

3 Implementation and benchmarks
Implementation

Implementation in NTL + gf2x

Three types

- GF2: \(p = 2 \), FFT, bit optimisation,
- \(\mathbb{zz}_p \): \(p < 2^{|\text{long}|} \), FFT, no bit-tricks,
- \(\mathbb{ZZ}_p \): generic \(p \), like \(\mathbb{zz}_p \) but slower.

Comparison to Magma

Three ways of handling field extensions

1. \(\text{quo}<U|P> \): quotient of multivariate polynomial ring + Gröbner bases
2. \(\text{ext}<k|P> \): field extension by \(X^p - X - \alpha \), precomputed bases + multivariate
3. \(\text{ext}<k|p> \): field extension of degree \(p \), precomputed bases + multivariate

Benchmarks (on 14 AMD Opteron 2500)

Three modes

- \(p = 2, \ d = 1 \), height varying,
- \(p \) varying, \(d = 1 \), height = 2,
- \(p = 5, \ d \) varying, height = 2.
Construction of the tower + precomputations

![Graph showing construction time vs. height and modulus for different algorithms](image)

- **zz_p**: Green line
- **GF2**: Red line
- **magma(1)**: Blue line
- **magma(2)**: Pink line
- **magma(3)**: Cyan line

The graph illustrates the performance of different algorithms for constructing towers and precomputing operations, with the x-axis representing the height of the tower and the y-axis showing the time in seconds. The modulus p is shown on a separate axis, indicating the scalability of the algorithms with respect to increasing p.
Multiplication

<table>
<thead>
<tr>
<th>height</th>
<th>seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000976562</td>
<td>0.00390625</td>
</tr>
<tr>
<td>0.015625</td>
<td></td>
</tr>
<tr>
<td>0.0625</td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td></td>
</tr>
<tr>
<td>256</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td></td>
</tr>
<tr>
<td>256</td>
<td></td>
</tr>
<tr>
<td>512</td>
<td></td>
</tr>
<tr>
<td>1024</td>
<td></td>
</tr>
<tr>
<td>2048</td>
<td></td>
</tr>
<tr>
<td>4096</td>
<td></td>
</tr>
</tbody>
</table>

Graphs showing the performance of different implementations over various heights and prime numbers.

L. De Feo and É. Schost ()
Fast arithmetics in Artin-Schreier towers
ISSAC, July 31, 2009 21 / 24
Isomorphism ([Couveignes ’00] vs Magma)
Benchmarks on isogenies ([Couveignes ’96])

Over $\mathbb{F}_{2^{101}}$, on an Intel Xeon E5430 Quad Core Processor 2.66GHz, 64GB ram

![Graph showing benchmark results for isogeny degree vs. time in seconds.](image-url)
These algorithms are packaged in a library

Download FAAST at
http://www.lix.polytechnique.fr/Labo/Luca.De-Feo/FAAST

We are currently writing an spkg for Sage.