
ISSAC 2009July 1

Large Matrix, small Rank

David Saunders & Bryan Youse

U of Delaware

... with implementations in the LinBox library.

www.linalg.org

ISSAC 2009July 2

Outline

• motivation in algebraic graph theory, Paley-type graphs

• rank conjecture for Dickson SRG family.

• rank algorithm for when rank ¡¡ matrix order

• heuristic plus certificate

• computational details

• implications for exact linear algebra software

ISSAC 2009July 3

Difference sets, Paley type graphs

Partial difference sets are in 1-1 correspondence with the strongly

regular graphs having a regular automorphism.

Paley graph:

vertices: elements of a field GF(pe).

edges: have edge (a, b) if a− b is a square.

Conjecture: Paley graph adjacency matrix has lowest p-rank of all

SRG. (falsified by Qing Xiang)

...promotes interest in p-ranks of families of SRG. How low can

these ranks get?

Paley type graph: other difference sets

For new difference sets, replace field by semi-field (non-associative).

Families of semi-field defined SRG: Pseudo-Paley, Cohen-Ganley,

Dickson, etc.

ISSAC 2009July 4

Dickson’s Hadamard difference set

G = additive group of GF(pe)×GF(pe)

Difference set D = {(a2 + gσ(b2), 2ab) | 0 6= (a, b) ∈ G}

where g is a generator, σ an automorphism of GF(pe).

D is the set of non-zero squares of a semi-field multiplication on G.

Adjacency matrix A = (ai,j), is n× n, where n = p2e and

ai,j =















p− 1, if i = j,

1, if ei − ej ∈ D,

0, otherwise.

ISSAC 2009July 5

For p = 3,

exponent order rank

e n = 32e r near 22e

1 9 4

2 81 20

3 729 85

4 6561 376

5 59049 1654

6 531441 7283

7 4782969 32064

8 43046721 ?

ISSAC 2009July 6

Hankel system

Is this sequence linear recurrent?

4, 20, 85, 367, 1654, 7283, ...





















4 20 85

20 85 376

85 376 1654

1654 7283 32064





























−1

2

4









=





















376

1654

7283

32064





















Conjecture: Minimal polynomial of Dickson rank sequence is

x3 − 4x− 2x + 1.

ISSAC 2009July 7

Hankel system





















4 20 85

20 85 376

85 376 1654

376 1654 7283

1654 7283 32064





























−1

2

4









=





















376

1654

7283

32064





















Conjecture: Minimal polynomial of Dickson rank sequence is

x3 − 4x− 2x + 1.

ISSAC 2009July 8

Hankel system





















4 20 85

20 85 376

85 376 1654

376 1654 7283

1654 7283 32064





























−1

2

4









=





















376

1654

7283

32064

r8





















r8 may disprove or strengthen the conjecture.

It’s computation is a challenge.

ISSAC 2009July 9

Algorithm template: Matrix Rank

Given n× n matrix A of rank r << n, compute r.

1. Choose block size b so that r < b << n.

2. Choose u (b× n) and v (n× b) and compute

d = uAv (d is b× b)

3. Compute r = rank(d).

4. If r is sufficiently less than b, return r as the rank of A,

otherwise “Block size b is too small”.

ISSAC 2009July 10

Think of projectors as strips of blocks.

We want u and v composed of easy to store and easy to use b× b

blocks.

For example, block size b, n = 3b, overall dimensions are

(b× n)(n× n)(n× b).

d =
[

u1 u2 u3

]

×









A1,1 A1,2 A1,3

A2,1 A2,2 A2,3

A3,1 A3,2 A3,3









×









v1

v2

v3









i.e.d =
∑

i

∑

j uiAi,jvj =
∑

i ui

∑

j Ai,jvj

ISSAC 2009July 11

Step 2, what projectors u, v?

(b× b) = (b× n)(n× n)(n× b)

1. u and v random: if b− rank(d) > 20, probability that

rank(d) 6= rank(A) is less than 1/106. [Cooperman and Havas]

2. ui and vj butterfly matrices: probability

of success is high if field cardinality is high enough. [this paper

(theory)]

3.

ui =





I

ru



 andvj =
[

I rv

]

,

where ru consists of 20 random rows and rv consists of 20

random cols. [this paper (practice)]

ISSAC 2009July 12

Idea: With care in choice of ui, vj , the probability that rank(d) =

rank(A) is high. Note that always rank(d) ≤ rank(A).

Why proceed this way? Ans: time and memory, especially memory.

For n = 314, we needed b = 215 and blocking factor b/n = 146

(storage circa 1G entries, number of blocks ∼ 21 thousand).

ISSAC 2009July 13

Step 1, what block size b?

If b is too small, we will learn this from the algorithm.

IF b is too large, we waste time and memory.

The application may suggest a value for b (as happens for the

Dickson graphs).

b = n2/3 could be used.

Recursive doubling could be used (at cost of a log(b) factor in the

runtime)

Henceforward we assume b is determined.

ISSAC 2009July 14

B Strip

MATRIX

ISSAC 2009July 15

For n = 316, block size is 217, blocking factor is 328

(storage circa 16G, number of blocks ∼ 100 thousand).

Block memory

b ∗ b = 234

Strip memory

b ∗ n > 242

Matrix memory

n ∗ n ∼ 251

d = uAv, goal: rank(d) = rank(A).

ISSAC 2009July 16

Butterfly preconditioner/projector

Butterfly stage 1 of lg(b) stages, b = 8





































a b

c d

∗ ∗

∗ ∗

∗ ∗

∗ ∗

∗ ∗

∗ ∗





































ISSAC 2009July 17

Butterfly stage 2





































a b

∗ ∗

c d

∗ ∗

∗ ∗

∗ ∗

∗ ∗

∗ ∗





































ISSAC 2009July 18

Butterfly stage 3





































a b

∗ ∗

∗ ∗

∗ ∗

c d

∗ ∗

∗ ∗

∗ ∗





































ISSAC 2009July 19

Butterfly preconditioner, M −→ MB

Multiply M by butterfly B costs O(b2logb) ops, and storage of B is

O(blog(b)).

Butterfly parameters can be set to permute k arbitrary columns

into the first k positions.

Butterfly parameters can be set to permute k arbitrary rows into

positions i, i + 1, . . . , k − 1. (i.e. into any contiguous chunk)

Therefore: n× b strip matrix v of b× b butterflies,

v = (B1, . . . , Bn/b)
T , can permute r columns (of n in A) into first r

positions (of b in Av).

ISSAC 2009July 20











0 ∗ 0 ∗ 0 0 ∗ ∗ 0 0 0 0 0 0 0 ∗ 0 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

0 ∗ 0 ∗ 0 0 ∗ ∗ 0 0 0 0 0 0 0 ∗ 0 0





















∗ ∗ 0 0 0 0 0 0 ∗ ∗ 0 0 0 0 0 0 ∗ 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

∗ ∗ 0 0 0 0 0 0 ∗ ∗ 0 0 0 0 0 0 ∗ 0





















∗ ∗ ∗ ∗ ∗ 0
...

...
...

...
...

...

∗ ∗ ∗ ∗ ∗ 0











ISSAC 2009July 21

Theorem. Using preconditioner/projectors of random butterfly

blocks yields an algorith that gives correct rank with high

probability when field cardinality is large enough (for the random

choices in butterflies) and uses O(n2log(b)) field ops and

O(b2 + nlog(b)) memory.

Corrolary. The rank computation is in O(r3), so overall runtime is

O∼(n2 + r3), which is optimal when r < n2/3.

ISSAC 2009July 22

Hueristic plus certificate approach

Idea: (a) Partition A into b× b blocks. Add up all the blocks. Hope

the rank of this sum is the rank of A. (b) Probabilistically certify

by augmenting with a few random linear combinations of the rows

and columns of A.

Thus, d = uAv, with

ui =





I

ru



 andvj =
[

I rv

]

,

where ru consists of 20 random rows and rv consists of 20 random

cols.

ISSAC 2009July 23

probabilistic certification

(One sided) Certification Theorem: Given A, an n× n matrix,

U , an n× b projection matrix, and

V , an random n× k random dense matrix,

let B = AU and C = (AU |AV).

(B is n× b, C is n× (b + k).)

If rank(B) = rank(C) then rank(C) = rank(A),

with probability of error less than 1/qk, where q is the cardinality

of the field.

Remark: We can compute rank(AU) and rank(AU |AV) in one

elimination.

ISSAC 2009July 24

Dickson SRG

e n = 32e r near 22e 2007t 2009r 2009t

1 9 4 - - -

2 81 20 0.021s 0.0003 0.0012s

3 729 85 0.35s 0.003s 0.022s

4 6,561 376 33.3s 0.046s 0.95s

5 59,049 1654 1800s 1.4s 61s

6 531,441 7283 46.7h 0.02h 1.2h

7 4,782,969 32064 - 1.2h 96.4h

8 43,046,721 ? - - -

Table 1: The Dickson SRG example computed with summation and

certificate. The time units are ‘s’ for seconds, and ‘h’ for hours.

ISSAC 2009July 25

3-packing

Three bits per field element.

Thus 21 elements per 64 bit word = 2.625 elements per byte.

(unpacked - int or float - 0.25 elements per byte)

(eg. 0 010 ... 000 001 010 011)

Normalized values are 0 = 0002, 1 = 0012, 2 = 0102.

Semi-normalized values are 0 = 0002 or 0112, 1 = 0012, 2 = 0102.

Intermediate results carry over to the third bit (and no farther).

Semi-normalization consists in clearing the third bit per entry.

ISSAC 2009July 26

add 3-packed words

input: packed semi-normalized words x, y. output: packed

semi-normalized word z.

mask3b = 0 001 001 001 ...

z = x + y

z = z + ((z & mask3b) >> 2)

Scalar mul and axpy (mul-add): only significant case is when scalar

is 2. Avoid inner loop branch by operating at vector level.

ISSAC 2009July 27

3-bitslicing

Use two bits per field element, one in each word of a 2 word pair

(in corresponding bit positions).

Thus 64 elements per two 64 bit words = 4 elements per byte.

Normalized values are 0 = 002, 1 = 012, 2 = 112.

(all results are normalized to these values), Boothby & Bradshaw.

eg. elements 0,1,2 are represented by first three bits of the word

pair x:

x0 = 011....

x1 = 001....

ISSAC 2009July 28

3-bitslicing arithmetic

x0 = 011....

x1 = 001....

smul:

case a = 2:

z0 = x0

z1 = x0 xor x1

add: 12 bit operations (6 each for z0 and z1).

axpy: smul + add

ISSAC 2009July 29

packing in mantissa of floats

Use arithmetic more, bit ops less. Less tight packing, less frequent

normalization.

Emphasis to date is on dot (for matrix mul), Dumas, Fousse, Salvy.

For n× n matrix and p = 3, choose d such that B = 2d+1 > 4n.

x =
∑d

0
aiB

i

y =
∑d

0
biB

i

z = xy

Then zd =
∑d

0
aibd−i.

Key point: highly tuned floating point matrix multiply can be used

(BLAS) followed by normalization.

ISSAC 2009July 30

GF(3) Arithmetic Comparison (MegaFFops)

Operation Size float int sliced pf

Vector Ops

add 107 120.65 165.9 4492

scalar mul 107 81.15 136.5 21008

axpy 107 77.96 98.46 6165

Matrix Ops

mv 15000 468.7 312.5 4168

mm 103 3835 350.9 3226 20k

Table 2: Speed of vector and matrix operations over GF(3), using

elements that are a) stored as floats and using BLAS for mm, b)

stored as ints, c) bit sliced, and d) compressed floats.

ISSAC 2009July 31

Conclusion

• Butterfly projection provides an optimal Monte Carlo rank

algorithm for matrices over a large field when the rank is small.

• Block-sum-heuristic-with-Monte-Carlo-certificate algorithm

plus bit-slicing enabled us to compute the 3-rank of the 7th

Dickson matrix, an approximately 5 million × 5 million dense

matrix, and formulate a conjecture about the Dickson

semi-field difference sets.

• In addition, parallelism will be needed (and will be sufficient)

to allow us to compute the rank of the 8th Dickson matrix of

order 316 (has 251 entries).

• Effective delivery of packing, of semi-normalized values (and of

parallelism) to the generic algorithms and users causes software

design issues. LinBox can and must take a design evolution

step to address this.

