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Carlitz; S. Cohen; Gao & Lauder; Wan; Ragot; Hou & Mullen; Bodin,
Debes & Najib; von zur Gathen, also with Viola & Ziegler and with
Giesbrecht & Ziegler.
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(De)comp

F a field of characteristic p > 0, g, h € F[z] of degree at least 2:
f=goh=g(h) € Flx] is their composition, and (g, h) a decomposition
of f.

» h(0) = 0: h original.
» W.l.o.g.: h monic original.
Fundamental dichotomy: tame vs. wild.
> (g, h) tame decomposition of f = go h <= ptdegg.
> f tame polynomial <= p1{deg f.
» Otherwise: wild.
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» Biggest contribution?

£ = smallest prime factor of n.
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n 2¢"t7/4(1 —¢q=1) otherwise.

We assume n # £, (2.

> #D, > an(1/2 —€),

> #Dy e > an(1/2 =€),

>t =H#(DneN Dy ) < ay e,

» contribution of all e £ £,n/lis < a, - €.
Then

oan(1—3€) <#Dpy+#Dy e —t

= #(Dn,g U Dn,n/é) < #Dn < Z #Dn,e < an(l + 6)'
ecE
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The fourth task

Bounding the minor contributions:
n
ule) =e+ —.
() =e+
> Several case distinctions: now only the “main” case: n has at least

three prime factors.
» Consider u(e) = e + n/e as a function of a real variable e:

0%u 2n
—862 (6) = 6_3 > 0,
U IS convex,

max u on [a,b] is u(a) or u(b),
u(e) <u(ly) fore e EX {{,n/l} = Es,

where /5 is the second largest divisor of n.
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c=u(l) —u(ly) >0,

Z #Dn,e < Z q“(e)(l — q_l)
ec By ecEy
=a, - Z g (©)—ulta)+ulta) —u(®)
ecEq

=a,-q ¢ Z qu(e)fu(ﬁg)
ecEs

2
1—qt

c

<Oén'q7 .
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f=goh=g"oh* (equal degree/distinct-degree)
m=mn/l: D, ¢N Dy, <> distinct-degree collisions
Fundamental tool: Ritt's Second Theorem.
Beardon & Ng 2000: “difficult to use”.

New: normal form for Ritt's Second Theorem.
Possibly “easy to use”.
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#Dn ¢ and #D,, .,/ are large.
f=goh=g"oh",
degg = degg™.

None if p t degg.
So assume that p | degg.

Algorithm
Given f, returns all pairs (g, h) with f = g o h. It works for most but not

all f.
Number: o(f).

The composition thus maps o(f) pairs (g, h) to one f.
Task: bound on o(f) “on average".
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Write

g=a"+guat 4o,

h=a2" 4 hpm 2™+ by o™ % 4
G hon 1 # 0, | e p 1, = ko = deg f,
f:goh:fnxn"’fn—lxnil"'"'
g.h ¢ Fla*].

Tool: coefficient comparison.
Example: k= p.
goh=h?+ g.h"+ -
First phase: k, 7, and h.
Second phase: rest of g.

)
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Case 2: km =n —p—+ 1. Solve for g,. Then
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Case 3: km = n — p. Solve two equations (2) for g, and h,,—_1.
Then hm,Q, hm,3, P
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Case 4: km < n — p. Determine h,,_1, hup_o2, ..., h; via top row,
then g, then h;_1, h;_o, ...via bottom row. A collision is possible

and leads to an equation of type (1).

Given f and h, solve for g: easy via Taylor expansion.
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» Equation (1): write s for A,—;.
P+ Kkg.s = c. (1)
The left hand side is F,-linear. Kernel:

sP + kgrs =0,
s#0: P71 = —kg,.

We allow only those g for which no such s # 0 exists. Then (1) has
a unique solution.



» Equation (2):
km=n—p=km—p,

ﬁ:k—ﬁ,m:p,/{:k—lz—l mod p.
m

s = hp—_1:

Jrm = 8" + g,

frcm—l = RgxS = _(fmn - Sp)s - 5p+1 - fmns-

()

Bluher (2004) has determined exactly the solution statistics of this
equation:

It has 0,1,2 or p + 1 solutions s.
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Forie I ={0,1,2,p+ 1}, let
ci = ¢ "#{(fum, fum—1) with i solutions}.

Bluher determines the ¢; exactly. For large p, we have

o~ d
0~ 5

clmgm()7
p
e~ d
2~ 5

q

Cp+1:\_ JNO

p>—p
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Analysis of the algorithm:

> correctness,
» cost: O~ (n(m + logq)),
» number o(f) of outputs.

Open question:

Efficient general algorithm for decomposition.




Counting result of the algorithm

The number of decomposable polynomials g o h is at least
k+m —1 1
M1 —q ) (1—-2¢) =ay - 57

with three values of €, which depend on the arithmetic of k£ = deg g and
m = degh.



The final analysis

2in

Figure: The tree of case distinctions for estimating #D,,.



Let F, be a finite field with g elements and characteristic p, let ¢ be the
smallest prime divisor of the composite integer n > 2, D,, the set of
decomposable polynomials in F,[z] of degree n, and

_ 2qé+n/é(1 _ q—l) if n ?é 62,
R e ) if n = (2.

Then the following hold.
> an/2 < #D, < an(1+ ¢ /3.
» If £ £porp?tnorp®|n, then #D,, > a,(1 —2¢71).
> If ptn, then |#D,, — a,| gan-q_"/3£2. )




Asymptotic result

Let vy, = #D,/a, over Fy, n be a composite integer and ¢ its smallest
prime divisor. Then

limsup vg, =1,

q—00
>3(1+77) 28 fn=0,
L 1 1 5 i g2 2
I|qm_>1or<1)f1/qm >38+g7) =5 if [ nandn# 7
=1 otherwise,

lim v, =1
ged(g,n)=1




Open questions

» Tighten gap for p = ¢ and p?||n.
» Simplify proof.




Thank you!



