The number of decomposable univariate polynomials

Joachim von zur Gathen Bonn

- (De)composition: tame vs. wild
- Collisions of compositions: distinct-degree Normal form for Ritt's Second Theorem
- Collisions of compositions: equal-degree Decomposition method
- Number of decomposables

- ▶ (De)composition: tame vs. wild
- Collisions of compositions: distinct-degree Normal form for Ritt's Second Theorem
- Collisions of compositions: equal-degree Decomposition method
- Number of decomposables

- Counting problems for polynomials
- ▶ (De)composition: tame vs. wild
- Collisions of compositions: distinct-degree Normal form for Ritt's Second Theorem
- Collisions of compositions: equal-degree
 Decomposition method
- Number of decomposables

- Counting problems for polynomials
- (De)composition: tame vs. wild
- Collisions of compositions: distinct-degree Normal form for Ritt's Second Theorem
- Collisions of compositions: equal-degree Decomposition method
- Number of decomposables

- Counting problems for polynomials
- (De)composition: tame vs. wild
- Collisions of compositions: distinct-degree Normal form for Ritt's Second Theorem
- Collisions of compositions: equal-degree Decomposition method
- Number of decomposables

- ▶ Prime Number Theorem: random integer m ≤ x: prob (m is prime) ≈ 1/(ln x).
- ▶ random $f \in \mathbb{F}_q[x]$ of degree n: prob $(f \text{ irreducible}) \approx \frac{1}{n}$.
- ▶ random $f \in \mathbb{F}_q[x_1, \dots, x_r]$ of degree n, for $r \ge 2$: prob $(f \text{ irreducible }) \approx 1$. error term \longleftrightarrow reducible polynomials $\approx \rho_{r,n}$
- Second order approximation: reducibles $\approx \rho_{r,n} \cdot (1 + \text{ error term})$.

▶ Prime Number Theorem: random integer $m \le x$: prob (m is prime) $\approx \frac{1}{\ln x}$.

▶ random $f \in \mathbb{F}_q[x]$ of degree n: prob $(f \text{ irreducible}) \approx \frac{1}{n}$.

▶ random $f \in \mathbb{F}_q[x_1, \dots, x_r]$ of degree n, for $r \ge 2$: prob $(f \text{ irreducible }) \approx 1$. error term \longleftrightarrow reducible polynomials $\approx \rho_{r,n}$

Second order approximation: reducibles $\approx \rho_{r,n} \cdot (1 + \text{ error term}).$

- Prime Number Theorem: random integer m ≤ x: prob (m is prime) ≈ 1/lnx.
- ▶ random $f \in \mathbb{F}_q[x]$ of degree n: prob $(f \text{ irreducible}) \approx \frac{1}{n}$.

▶ random $f \in \mathbb{F}_q[x_1, \dots, x_r]$ of degree n, for $r \ge 2$: prob $(f \text{ irreducible }) \approx 1$. error term \longleftrightarrow reducible polynomials $\approx \rho_{r,n}$

```
Second order approximation:
reducibles \approx \rho_{r,n} \cdot (1 + \text{ error term}).
```

- Prime Number Theorem: random integer m ≤ x: prob (m is prime) ≈ 1/lnx.
- ▶ random $f \in \mathbb{F}_q[x]$ of degree n: prob $(f \text{ irreducible}) \approx \frac{1}{n}$.
- random f ∈ 𝔽_q[x₁,...,x_r] of degree n, for r ≥ 2: prob (f irreducible) ≈ 1. error term ↔ reducible polynomials ≈ ρ_{r.n}

```
Second order approximation:
reducibles \approx \rho_{r,n} \cdot (1 + \text{ error term}).
```

- ▶ Prime Number Theorem: random integer $m \le x$: prob (m is prime) $\approx \frac{1}{\ln x}$.
- ▶ random $f \in \mathbb{F}_q[x]$ of degree n: prob $(f \text{ irreducible}) \approx \frac{1}{n}$.
- ► random $f \in \mathbb{F}_q[x_1, ..., x_r]$ of degree n, for $r \ge 2$: prob $(f \text{ irreducible }) \approx 1$. error term \longleftrightarrow reducible polynomials $\approx \rho_{r,n}$
- ► Second order approximation: reducibles $\approx \rho_{r,n} \cdot (1 + \text{ error term}).$

- ▶ Prime Number Theorem: random integer $m \le x$: prob (m is prime) $\approx \frac{1}{\ln x}$.
- ▶ random $f \in \mathbb{F}_q[x]$ of degree n: prob $(f \text{ irreducible}) \approx \frac{1}{n}$.
- ► random $f \in \mathbb{F}_q[x_1, ..., x_r]$ of degree n, for $r \ge 2$: prob $(f \text{ irreducible }) \approx 1$. error term \longleftrightarrow reducible polynomials $\approx \rho_{r,n}$
- ► Second order approximation: reducibles $\approx \rho_{r,n} \cdot (1 + \text{ error term}).$

Similarly: squareful, relatively irreducible, singular, decomposable multivariate polynomials.

Carlitz; S. Cohen; Gao & Lauder; Wan; Ragot; Hou & Mullen; Bodin, Dèbes & Najib; von zur Gathen, also with Viola & Ziegler and with Giesbrecht & Ziegler. Similarly: squareful, relatively irreducible, singular, decomposable multivariate polynomials.

Carlitz; S. Cohen; Gao & Lauder; Wan; Ragot; Hou & Mullen; Bodin, Dèbes & Najib; von zur Gathen, also with Viola & Ziegler and with Giesbrecht & Ziegler.

(De)composition

F a field of characteristic $p \ge 0$, $g, h \in F[x]$ of degree at least 2: $f = g \circ h = g(h) \in F[x]$ is their composition, and (g, h) a decomposition of f.

- ▶ h(0) = 0: h original.
- ▶ W.I.o.g.: *h* monic original.

Fundamental dichotomy: tame vs. wild.

- (g,h) tame decomposition of $f = g \circ h \iff p \nmid \deg g$.
- f tame polynomial $\iff p \nmid \deg f$.
- ► Otherwise: *wild*.

(De)composition

F a field of characteristic $p \ge 0$, $g, h \in F[x]$ of degree at least 2: $f = g \circ h = g(h) \in F[x]$ is their composition, and (g, h) a decomposition of f.

- ▶ h(0) = 0: h original.
- ▶ W.I.o.g.: *h* monic original.

Fundamental dichotomy: tame vs. wild.

- (g,h) tame decomposition of $f = g \circ h \iff p \nmid \deg g$.
- f tame polynomial $\iff p \nmid \deg f$.
- ► Otherwise: *wild*.

(De)composition

F a field of characteristic $p \ge 0$, $g, h \in F[x]$ of degree at least 2: $f = g \circ h = g(h) \in F[x]$ is their composition, and (g, h) a decomposition of f.

- ▶ h(0) = 0: h original.
- ▶ W.I.o.g.: *h* monic original.

Fundamental dichotomy: tame vs. wild.

- ▶ (g,h) tame decomposition of $f = g \circ h \iff p \nmid \deg g$.
- f tame polynomial $\iff p \nmid \deg f$.
- Otherwise: *wild*.

$$\begin{split} P_n &= \{ \text{polynomials in } F[x] \text{ of degree } n \}, \\ P_n^0 &= \{ f \in P_n \colon f \text{ monic original} \}, \\ E &= \{ e \in \mathbb{N} \colon f \text{ monic original} \}, \\ E &= \{ e \in \mathbb{N} \colon e \mid n, 1 < e < n \}, \\ e \in E \colon \gamma_{n,e} \colon P_e \times P_{n/e}^0 \to P_n, \\ &\qquad (g,h) \mapsto g \circ h, \\ D_{n,e} &= \text{im } \gamma_{n,e}, \\ \# D_{n,e} \leq q^{e+n/e} (1-q^{-1}), \\ D_n &= \bigcup_{e \in E} D_{n,e}. \end{split}$$

▶ Biggest contribution?

 $\ell =$ smallest prime factor of n.

$$\begin{split} P_n &= \{ \text{polynomials in } F[x] \text{ of degree } n \}, \\ P_n^0 &= \{ f \in P_n \colon f \text{ monic original} \}, \\ E &= \{ e \in \mathbb{N} \colon e \mid n, 1 < e < n \}, \\ e \in E \colon \gamma_{n,e} \colon P_e \times P_{n/e}^0 \to P_n, \\ &\qquad (g,h) \mapsto g \circ h, \\ D_{n,e} &= \text{im } \gamma_{n,e}, \\ \# D_{n,e} &\leq q^{e+n/e} (1-q^{-1}), \\ D_n &= \bigcup_{e \in E} D_{n,e}. \end{split}$$

Biggest contribution?

 $\ell =$ smallest prime factor of n.

Four tasks

$$\alpha_{n=} \begin{cases} q^{\ell+n/\ell} (1-q^{-1}) & \text{if } n = \ell^2, \\ 2q^{\ell+n/\ell} (1-q^{-1}) & \text{otherwise.} \end{cases}$$

We assume $n \neq \ell, \ell^2$.

 $\blacktriangleright \ \# D_{n,\ell} \geq \alpha_n (1/2 - \epsilon),$

•
$$#D_{n,n/\ell} \ge \alpha_n (1/2 - \epsilon),$$

$$t = \#(D_{n,\ell} \cap D_{n,n/\ell}) \le \alpha_n \cdot \epsilon,$$

• contribution of all $e \neq \ell, n/\ell$ is $\leq \alpha_n \cdot \epsilon$.

Then

$$\alpha_n (1 - 3\epsilon) \le \# D_{n,\ell} + \# D_{n,n/\ell} - t = \# (D_{n,\ell} \cup D_{n,n/\ell}) \le \# D_n \le \sum_{e \in E} \# D_{n,e} \le \alpha_n (1 + \epsilon).$$

Four tasks

$$\alpha_{n=} \begin{cases} q^{\ell+n/\ell} (1-q^{-1}) & \text{if } n = \ell^2, \\ 2q^{\ell+n/\ell} (1-q^{-1}) & \text{otherwise.} \end{cases}$$

We assume $n \neq \ell, \ell^2$.

 $\blacktriangleright \ \# D_{n,\ell} \geq \alpha_n (1/2 - \epsilon),$

•
$$#D_{n,n/\ell} \ge \alpha_n (1/2 - \epsilon),$$

$$t = \#(D_{n,\ell} \cap D_{n,n/\ell}) \le \alpha_n \cdot \epsilon,$$

▶ contribution of all $e \neq \ell, n/\ell$ is $\leq \alpha_n \cdot \epsilon$. Then

$$\alpha_n (1 - 3\epsilon) \le \# D_{n,\ell} + \# D_{n,n/\ell} - t = \# (D_{n,\ell} \cup D_{n,n/\ell}) \le \# D_n \le \sum_{e \in E} \# D_{n,e} \le \alpha_n (1 + \epsilon).$$

Bounding the minor contributions:

$$u(e) = e + \frac{n}{e}.$$

Several case distinctions: now only the "main" case: n has at least three prime factors.

• Consider u(e) = e + n/e as a function of a real variable e:

$$\begin{split} &\frac{\partial^2 u}{\partial e^2}(e) = \frac{2n}{e^3} > 0, \\ &u \text{ is convex}, \\ &\max u \text{ on } [a,b] \text{ is } u(a) \text{ or } u(b), \\ &u(e) \leq u(\ell_2) \text{ for } e \in E \smallsetminus \{\ell, n/\ell\} = E_2 \end{split}$$

Bounding the minor contributions:

$$u(e) = e + \frac{n}{e}.$$

Several case distinctions: now only the "main" case: n has at least three prime factors.

• Consider u(e) = e + n/e as a function of a real variable e:

$$\begin{split} &\frac{\partial^2 u}{\partial e^2}(e) = \frac{2n}{e^3} > 0, \\ &u \text{ is convex}, \\ &\max u \text{ on } [a,b] \text{ is } u(a) \text{ or } u(b), \\ &u(e) \leq u(\ell_2) \text{ for } e \in E \smallsetminus \{\ell, n/\ell\} = E_2 \end{split}$$

Bounding the minor contributions:

$$u(e) = e + \frac{n}{e}.$$

- Several case distinctions: now only the "main" case: n has at least three prime factors.
- Consider u(e) = e + n/e as a function of a real variable e:

$$\begin{split} &\frac{\partial^2 u}{\partial e^2}(e) = \frac{2n}{e^3} > 0, \\ &u \text{ is convex}, \\ &\max u \text{ on } [a,b] \text{ is } u(a) \text{ or } u(b), \\ &u(e) \leq u(\ell_2) \text{ for } e \in E \smallsetminus \{\ell, n/\ell\} = E_2 \end{split}$$

Bounding the minor contributions:

$$u(e) = e + \frac{n}{e}.$$

- Several case distinctions: now only the "main" case: n has at least three prime factors.
- Consider u(e) = e + n/e as a function of a real variable e:

$$\begin{split} &\frac{\partial^2 u}{\partial e^2}(e) = \frac{2n}{e^3} > 0, \\ &u \text{ is convex}, \\ &\max u \text{ on } [a,b] \text{ is } u(a) \text{ or } u(b), \\ &u(e) \leq u(\ell_2) \text{ for } e \in E \smallsetminus \{\ell, n/\ell\} = E_2, \end{split}$$

$$c = u(\ell) - u(\ell_2) > 0,$$

$$\sum_{e \in E_2} \# D_{n,e} \le \sum_{e \in E_2} q^{u(e)} (1 - q^{-1})$$

$$= \alpha_n \cdot \sum_{e \in E_2} q^{u(e) - u(\ell_2) + u(\ell_2) - u(\ell)}$$

$$= \alpha_n \cdot q^{-c} \cdot \sum_{e \in E_2} q^{u(e) - u(\ell_2)}$$

$$< \alpha_n \cdot q^{-c} \cdot \frac{2}{1 - q^{-1}} = \alpha_n \cdot \varepsilon.$$

$$c = u(\ell) - u(\ell_2) > 0,$$

$$\sum_{e \in E_2} \# D_{n,e} \le \sum_{e \in E_2} q^{u(e)} (1 - q^{-1})$$

$$= \alpha_n \cdot \sum_{e \in E_2} q^{u(e) - u(\ell_2) + u(\ell_2) - u(\ell)}$$

$$= \alpha_n \cdot q^{-c} \cdot \sum_{e \in E_2} q^{u(e) - u(\ell_2)}$$

$$< \alpha_n \cdot q^{-c} \cdot \frac{2}{1 - q^{-1}} = \alpha_n \cdot \varepsilon.$$

 $f = g \circ h = g^* \circ h^*$ (equal degree/distinct-degree) $m = n/\ell \colon D_{n,\ell} \cap D_{n,m} \leftrightarrow$ distinct-degree collisions

Fundamental tool: Ritt's Second Theorem. Beardon & Ng 2000: "difficult to use". New: normal form for Ritt's Second Theorem. Possibly "easy to use". $f = g \circ h = g^* \circ h^*$ (equal degree/distinct-degree) $m = n/\ell \colon D_{n,\ell} \cap D_{n,m} \leftrightarrow$ distinct-degree collisions

Fundamental tool: Ritt's Second Theorem. Beardon & Ng 2000: "difficult to use". New: normal form for Ritt's Second Theorem. Possibly "easy to use".

 $\#D_{n,\ell}$ and $\#D_{n,n/\ell}$ are large.

$$f = g \circ h = g^* \circ h^*,$$
$$\deg g = \deg g^*.$$

None if $p \nmid \deg g$. So assume that $p \mid \deg g$.

Algorithm

Given f, returns all pairs (g,h) with $f=g\circ h.$ It works for most but not all f. Number: $\sigma(f).$

 $\#D_{n,\ell}$ and $\#D_{n,n/\ell}$ are large.

$$f = g \circ h = g^* \circ h^*,$$
$$\deg g = \deg g^*.$$

None if $p \nmid \deg g$. So assume that $p \mid \deg g$.

Algorithm

Given f, returns all pairs (g,h) with $f=g\circ h.$ It works for most but not all f. Number: $\sigma(f).$

 $\#D_{n,\ell}$ and $\#D_{n,n/\ell}$ are large.

$$f = g \circ h = g^* \circ h^*,$$
$$\deg g = \deg g^*.$$

None if $p \nmid \deg g$. So assume that $p \mid \deg g$.

Algorithm

Given f, returns all pairs (g,h) with $f=g\circ h.$ It works for most but not all f. Number: $\sigma(f).$

 $\#D_{n,\ell}$ and $\#D_{n,n/\ell}$ are large.

$$f = g \circ h = g^* \circ h^*,$$
$$\deg g = \deg g^*.$$

None if $p \nmid \deg g$. So assume that $p \mid \deg g$.

Algorithm

Given f, returns all pairs (g,h) with $f=g\circ h.$ It works for most but not all f. Number: $\sigma(f).$

Write

$$g = x^{k} + g_{\kappa} x^{\kappa} + \cdots,$$

$$h = x^{m} + h_{m-1} x^{m-1} + h_{m-2} x^{m-2} + \cdots,$$

$$g_{\kappa}, h_{m-1} \neq 0, p \mid k, p \nmid \kappa, n = km = \deg f,$$

$$f = g \circ h = f_{n} x^{n} + f_{n-1} x^{n-1} + \cdots,$$

$$g, h \notin F[x^{p}].$$

Tool: coefficient comparison Example: k = p. $g \circ h = h^p + g_{\kappa}h^{\kappa} + \cdots$ First phase: κ , γ_{κ} and h. Second phase: rest of g.

Write

$$g = x^{k} + g_{\kappa} x^{\kappa} + \cdots,$$

$$h = x^{m} + h_{m-1} x^{m-1} + h_{m-2} x^{m-2} + \cdots,$$

$$g_{\kappa}, h_{m-1} \neq 0, p \mid k, p \nmid \kappa, n = km = \deg f,$$

$$f = g \circ h = f_{n} x^{n} + f_{n-1} x^{n-1} + \cdots,$$

$$g, h \notin F[x^{p}].$$

Tool: coefficient comparison Example: k = p. $g \circ h = h^p + g_{\kappa}h^{\kappa} + \cdots$ First phase: κ , γ_{κ} and h. Second phase: rest of g.

Write

$$g = x^{k} + g_{\kappa} x^{\kappa} + \cdots,$$

$$h = x^{m} + h_{m-1} x^{m-1} + h_{m-2} x^{m-2} + \cdots,$$

$$g_{\kappa}, h_{m-1} \neq 0, p \mid k, p \nmid \kappa, n = km = \deg f,$$

$$f = g \circ h = f_{n} x^{n} + f_{n-1} x^{n-1} + \cdots,$$

$$g, h \notin F[x^{p}].$$

Tool: coefficient comparison. Example: k = p. $g \circ h = h^p + g_{\kappa}h^{\kappa} + \cdots$ First phase: κ , γ_{κ} and h. Second phase: rest of g.

Case 1: $\kappa m \ge n - p + 2$. Solve for g_{κ} , then h_{m-1} , h_{m-2} ,

Case 2: $\kappa m = n - p + 1$. Solve for g_{κ} . Then

$$h_{m-1}^{p} + \kappa g_{\kappa} h_{m-1} = f_{n-p}.$$
 (1)

Solve for h_{m-1} and continue with h_{m-2} , h_{m-3} , \ldots

Case 3: $\kappa m = n - p$. Solve two equations (2) for g_{κ} and h_{m-1} . Then h_{m-2} , h_{m-3} ,

Case 4: $\kappa m < n - p$. Determine h_{m-1} , h_{m-2} , ..., h_i via top row, then g_{κ} , then h_{i-1} , h_{i-2} , ... via bottom row. A collision is possible and leads to an equation of type (1).

Case 4: $\kappa m < n - p$. Determine h_{m-1} , h_{m-2} , ..., h_i via top row, then g_{κ} , then h_{i-1} , h_{i-2} , ... via bottom row. A collision is possible and leads to an equation of type (1).

Given f and h, solve for g: easy via Taylor expansion.

• Equation (1): write s for h_{m-i} .

$$s^p + \kappa g_\kappa s = c. \tag{1}$$

The left hand side is \mathbb{F}_p -linear. Kernel:

$$s^{p} + \kappa g_{k} s = 0,$$

$$s \neq 0: s^{p-1} = -\kappa g_{\kappa}.$$

We allow only those g for which no such $s \neq 0$ exists. Then (1) has a unique solution.

• Equation (1): write s for h_{m-i} .

$$s^p + \kappa g_\kappa s = c. \tag{1}$$

The left hand side is \mathbb{F}_p -linear. Kernel:

$$s^{p} + \kappa g_{k} s = 0,$$

$$s \neq 0: s^{p-1} = -\kappa g_{\kappa}.$$

We allow only those g for which no such $s \neq 0$ exists. Then (1) has a unique solution.

• Equation (1): write s for h_{m-i} .

$$s^p + \kappa g_\kappa s = c. \tag{1}$$

The left hand side is \mathbb{F}_p -linear. Kernel:

$$s^{p} + \kappa g_{k} s = 0,$$

$$s \neq 0: s^{p-1} = -\kappa g_{\kappa}.$$

We allow only those g for which no such $s \neq 0$ exists. Then (1) has a unique solution.

$$\kappa m = n - p = km - p,$$

$$\kappa = k - \frac{p}{m}, m = p, \kappa = k - 1 \equiv -1 \mod p.$$

 $s = h_{m-1}$:

$$f_{\kappa m} = s^p + g_{\kappa},$$

$$f_{\kappa m-1} = \kappa g_{\kappa} s = -(f_{\kappa m} - s^p) s = s^{p+1} - f_{\kappa m} s.$$
(2)

Bluher (2004) has determined exactly the solution statistics of this equation:

It has
$$0, 1, 2$$
 or $p+1$ solutions s.

For $i\in I=\{0,1,2,p+1\},$ let $c_i=q^{-1}\#\{(f_{\kappa m},f_{\kappa m-1}) \text{ with } i \text{ solutions}\}.$

Bluher determines the c_i exactly. For large p, we have

$$c_0 \approx \frac{q}{2},$$

$$c_1 \approx \frac{q}{p} \approx 0,$$

$$c_2 \approx \frac{q}{2},$$

$$c_{p+1} = \lfloor \frac{q}{p^3 - p} \rfloor \approx 0.$$

For $i\in I=\{0,1,2,p+1\},$ let $c_i=q^{-1}\#\{(f_{\kappa m},f_{\kappa m-1}) \text{ with } i \text{ solutions}\}.$

Bluher determines the c_i exactly. For large p, we have

$$c_0 \approx \frac{q}{2},$$

$$c_1 \approx \frac{q}{p} \approx 0,$$

$$c_2 \approx \frac{q}{2},$$

$$c_{p+1} = \lfloor \frac{q}{p^3 - p} \rfloor \approx 0.$$

- ► correctness,
- ▶ cost: $\mathcal{O}^{\sim}(n(m + \log q))$,
- number $\sigma(f)$ of outputs.

Open question:

correctness,

- $\blacktriangleright \text{ cost: } \mathcal{O}^{\sim}(n(m+\log q)),$
- number $\sigma(f)$ of outputs.

Open question:

- correctness,
- ▶ cost: $\mathcal{O}^{\sim}(n(m + \log q))$,
- number $\sigma(f)$ of outputs.

Open question:

- correctness,
- ▶ cost: $\mathcal{O}^{\sim}(n(m + \log q))$,
- number $\sigma(f)$ of outputs.

Open question:

- correctness,
- ▶ cost: $\mathcal{O}^{\sim}(n(m + \log q))$,
- number $\sigma(f)$ of outputs.

Open question:

The number of decomposable polynomials $g \circ h$ is at least

$$q^{k+m}(1-q^{-1})\cdot(1-2\epsilon) = \alpha_n \cdot \left(\frac{1}{2}-\epsilon\right),$$

with three values of $\epsilon,$ which depend on the arithmetic of $k=\deg g$ and $m=\deg h.$

The final analysis

Figure: The tree of case distinctions for estimating $\#D_n$.

Main Theorem:

Let \mathbb{F}_q be a finite field with q elements and characteristic p, let ℓ be the smallest prime divisor of the composite integer $n \geq 2$, D_n the set of decomposable polynomials in $\mathbb{F}_q[x]$ of degree n, and

$$\alpha_n = \begin{cases} 2q^{\ell+n/\ell}(1-q^{-1}) & \text{if } n \neq \ell^2, \\ q^{2\ell}(1-q^{-1}) & \text{if } n = \ell^2. \end{cases}$$

Then the following hold.

- $\alpha_n/2 \le \#D_n \le \alpha_n(1+q^{-n/3\ell^2}).$ If ℓ ≠ p or p² ∤ n or p³ | n, then #D_n ≥ $\alpha_n(1-2q^{-1}).$
- If $p \nmid n$, then $|\#D_n \alpha_n| \le \alpha_n \cdot q^{-n/3\ell^2}$.

Asymptotic result

Let $\nu_{q,n}=\#D_n/\alpha_n$ over \mathbb{F}_q , n be a composite integer and ℓ its smallest prime divisor. Then

 $\limsup_{q \to \infty} \nu_{q,n} = 1,$

$$\liminf_{q \to \infty} \nu_{q,n} \begin{cases} \geq \frac{1}{2}(1 + \frac{1}{\ell+1}) \geq \frac{2}{3} & \text{if } n = \ell^2, \\ \geq \frac{1}{4}(3 + \frac{1}{\ell+1}) \geq \frac{5}{6} & \text{if } \ell^2 \parallel n \text{ and } n \neq \ell^2, \\ = 1 & \text{otherwise,} \end{cases}$$

$$\lim_{\substack{q \to \infty \\ \gcd(q,n) = 1}} \nu_{q,n} = 1.$$

Open questions

- Tighten gap for $p = \ell$ and $p^2 || n$.
- Simplify proof.

Thank you!