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Counting problems for polynomials

▶ Prime Number Theorem: random integerm ≤ x:
prob (m is prime ) ≈ 1

lnx .

▶ random f ∈ Fq[x] of degree n:
prob (f irreducible) ≈ 1

n .

▶ random f ∈ Fq[x1, . . . , xr ] of degree n, for r ≥ 2:
prob (f irreducible ) ≈ 1.
error term ←→ reducible polynomials ≈ �r,n

▶ Second order approximation:
reducibles ≈ �r,n ⋅ (1 + error term).
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▶ Similarly: squareful, relatively irreducible, singular, decomposable
multivariate polynomials.

Carlitz; S. Cohen; Gao & Lauder; Wan; Ragot; Hou & Mullen; Bodin,
Dèbes & Najib; von zur Gathen, also with Viola & Ziegler and with
Giesbrecht & Ziegler.
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Dèbes & Najib; von zur Gathen, also with Viola & Ziegler and with
Giesbrecht & Ziegler.

14



(De)composition

F a field of characteristic p ≥ 0, g, ℎ ∈ F [x] of degree at least 2:
f = g ∘ ℎ = g(ℎ) ∈ F [x] is their composition, and (g, ℎ) a decomposition

of f .

▶ ℎ(0) = 0: ℎ original.

▶ W.l.o.g.: ℎ monic original.

Fundamental dichotomy: tame vs. wild.

▶ (g, ℎ) tame decomposition of f = g ∘ ℎ⇐⇒ p ∤ deg g.

▶ f tame polynomial ⇐⇒ p ∤ deg f .

▶ Otherwise: wild.
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Pn = {polynomials in F [x] of degree n},

P 0
n = {f ∈ Pn : f monic original},

E = {e ∈ ℕ : e ∣ n, 1 < e < n},

e ∈ E : 
n,e : Pe × P 0
n/e → Pn,

(g, ℎ) 7→ g ∘ ℎ,

Dn,e = im 
n,e,

#Dn,e ≤ qe+n/e(1− q−1),

Dn =
∪

e∈E

Dn,e.

▶ Biggest contribution?

ℓ = smallest prime factor of n.
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Four tasks

�n=

{

qℓ+n/ℓ(1− q−1) if n = ℓ2,

2qℓ+n/ℓ(1− q−1) otherwise.

We assume n ∕= ℓ, ℓ2.

▶ #Dn,ℓ ≥ �n(1/2− �),

▶ #Dn,n/ℓ ≥ �n(1/2− �),

▶ t = #(Dn,ℓ ∩Dn,n/ℓ) ≤ �n ⋅ �,

▶ contribution of all e ∕= ℓ, n/ℓ is ≤ �n ⋅ �.

Then

�n(1− 3�) ≤ #Dn,ℓ +#Dn,n/ℓ − t

= #(Dn,ℓ ∪Dn,n/ℓ) ≤ #Dn ≤
∑

e∈E

#Dn,e ≤ �n(1 + �).
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The fourth task

Bounding the minor contributions:

u(e) = e+
n

e
.

▶ Several case distinctions: now only the “main” case: n has at least
three prime factors.

▶ Consider u(e) = e+ n/e as a function of a real variable e:

∂2u

∂e2
(e) =

2n

e3
> 0,

u is convex,

max u on [a, b] is u(a) or u(b),

u(e) ≤ u(ℓ2) for e ∈ E ∖ {ℓ, n/ℓ} = E2,

where ℓ2 is the second largest divisor of n.
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c = u(ℓ)− u(ℓ2) > 0,
∑

e∈E2

#Dn,e ≤
∑

e∈E2

qu(e)(1− q−1)

= �n ⋅
∑

e∈E2

qu(e)−u(ℓ2)+u(ℓ2)−u(ℓ)

= �n ⋅ q
−c ⋅

∑

e∈E2

qu(e)−u(ℓ2)

< �n ⋅ q
−c ⋅

2

1− q−1
= �n ⋅ ".
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Third task: distinct-degree collisions

f = g ∘ ℎ = g∗ ∘ ℎ∗ (equal degree/distinct-degree)

m = n/ℓ : Dn,ℓ ∩Dn,m ↔ distinct-degree collisions

Fundamental tool: Ritt’s Second Theorem.
Beardon & Ng 2000: “difficult to use”.
New: normal form for Ritt’s Second Theorem.
Possibly “easy to use”.
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First and second tasks: equal-degree collisions

#Dn,ℓ and #Dn,n/ℓ are large.

f = g ∘ ℎ = g∗ ∘ ℎ∗,

deg g = deg g∗.

None if p ∤ deg g.
So assume that p ∣ deg g.

Algorithm

Given f , returns all pairs (g, ℎ) with f = g ∘ ℎ. It works for most but not
all f .
Number: �(f).

The composition thus maps �(f) pairs (g, ℎ) to one f .
Task: bound on �(f) “on average”.
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Write

g = xk + g�x
� + ⋅ ⋅ ⋅ ,

ℎ = xm + ℎm−1x
m−1 + ℎm−2x

m−2 + ⋅ ⋅ ⋅ ,

g�, ℎm−1 ∕= 0, p ∣ k, p ∤ �, n = km = deg f,

f = g ∘ ℎ = fnx
n + fn−1x

n−1 + ⋅ ⋅ ⋅

g, ℎ /∈ F [xp].

Tool: coefficient comparison.
Example: k = p.
g ∘ ℎ = ℎp + g�ℎ

� + ⋅ ⋅ ⋅
First phase: �, 
� and ℎ.
Second phase: rest of g.
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ℎp : bc bc bc bc . . .
n n− p n− 2p n− 3p
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ℎp : bc bc bc bc . . .
n n− p n− 2p n− 3p

ℎ� : bc bc bc bc bc . . .
�m
�m− 1

↓

Case 1: �m ≥ n− p+ 2. Solve for g�, then ℎm−1, ℎm−2, . . . .
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ℎp : bc bc bc bc . . .
n n− p n− 2p n− 3p

ℎ� : bc bc bc bc bc . . .
�m
�m− 1

↓

Case 2: �m = n− p+ 1. Solve for g�. Then

ℎp
m−1 + �g�ℎm−1 = fn−p. (1)

Solve for ℎm−1 and continue with ℎm−2, ℎm−3, . . . .
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ℎp : bc bc bc bc . . .
n n− p n− 2p n− 3p

ℎ� : bc bc bc bc bc . . .
�m
�m− 1

↓

Case 3: �m = n − p. Solve two equations (2) for g� and ℎm−1.
Then ℎm−2, ℎm−3, . . . .
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ℎp : bc bc bc bc . . .
n n− p n− 2p n− 3p

ℎ� : bc bc bc bc bc . . .
�m
�m− 1

↓

Case 4: �m < n− p. Determine ℎm−1, ℎm−2, . . . , ℎi via top row,
then g�, then ℎi−1, ℎi−2, . . . via bottom row. A collision is possible
and leads to an equation of type (1).
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ℎp : bc bc bc bc . . .
n n− p n− 2p n− 3p

ℎ� : bc bc bc bc bc . . .
�m
�m− 1

↓

Case 4: �m < n− p. Determine ℎm−1, ℎm−2, . . . , ℎi via top row,
then g�, then ℎi−1, ℎi−2, . . . via bottom row. A collision is possible
and leads to an equation of type (1).

Given f and ℎ, solve for g: easy via Taylor expansion.
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▶ Equation (1): write s for ℎm−i.

sp + �g�s = c. (1)

The left hand side is Fp-linear. Kernel:

sp + �gks = 0,

s ∕= 0: sp−1 = −�g�.

We allow only those g for which no such s ∕= 0 exists. Then (1) has
a unique solution.
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▶ Equation (2):

�m = n− p = km− p,

� = k −
p

m
,m = p, � = k − 1 ≡ −1 mod p.

s = ℎm−1:

f�m = sp + g�,

f�m−1 = �g�s = −(f�m − sp)s = sp+1 − f�ms.
(2)

Bluher (2004) has determined exactly the solution statistics of this
equation:

It has 0, 1, 2 or p+ 1 solutions s.
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For i ∈ I = {0, 1, 2, p+ 1}, let

ci = q−1#{(f�m, f�m−1) with i solutions}.

Bluher determines the ci exactly. For large p, we have

c0 ≈
q

2
,

c1 ≈
q

p
≈ 0,

c2 ≈
q

2
,

cp+1 = ⌊
q

p3 − p
⌋ ≈ 0.
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Analysis of the algorithm:

▶ correctness,

▶ cost: O∼(n(m+ log q)),

▶ number �(f) of outputs.

Open question:

Efficient general algorithm for decomposition.
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Counting result of the algorithm

The number of decomposable polynomials g ∘ ℎ is at least

qk+m(1− q−1) ⋅ (1− 2�) = �n ⋅

(

1

2
− �

)

,

with three values of �, which depend on the arithmetic of k = deg g and
m = deg ℎ.

58



The final analysis

b

I b

n = ℓ2

A b

p ∕= ℓ

b B

p = ℓ

b II

n ∕= ℓ2

A b

p ∤ n

b i

ℓ2 ∤ n

ii b

ℓ2 ∣ n

b B

p ∣ n

i b

ℓ2 ∤ n

a b

p ∕= ℓ

b b

p = ℓ

b ii

ℓ2 ∣ n

a b

p ∕= ℓ

b b

p = ℓ

� b

p3 ∤ n

b �

p3 ∣ n

Figure: The tree of case distinctions for estimating #Dn.59



Main Theorem:

Let Fq be a finite field with q elements and characteristic p, let ℓ be the
smallest prime divisor of the composite integer n ≥ 2, Dn the set of
decomposable polynomials in Fq[x] of degree n, and

�n =

{

2qℓ+n/ℓ(1 − q−1) if n ∕= ℓ2,

q2ℓ(1− q−1) if n = ℓ2.

Then the following hold.

▶ �n/2 ≤ #Dn ≤ �n(1 + q−n/3ℓ2).

▶ If ℓ ∕= p or p2 ∤ n or p3 ∣ n, then #Dn ≥ �n(1− 2q−1).

▶ If p ∤ n, then ∣#Dn − �n∣ ≤ �n ⋅ q
−n/3ℓ2 .
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Asymptotic result

Let �q,n = #Dn/�n over Fq, n be a composite integer and ℓ its smallest
prime divisor. Then

lim sup
q→∞

�q,n = 1,

lim inf
q→∞

�q,n

⎧



⎨



⎩

≥ 1
2 (1 +

1
ℓ+1 ) ≥

2
3 if n = ℓ2,

≥ 1
4 (3 +

1
ℓ+1 ) ≥

5
6 if ℓ2 ∥ n and n ∕= ℓ2,

= 1 otherwise,

lim
q→∞

gcd(q,n)=1

�q,n = 1.
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Open questions

▶ Tighten gap for p = ℓ and p2∥n.

▶ Simplify proof.
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Thank you!
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