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Algorithms Definitions and Properties Approach Example

Liouvillian Solutions of Linear Difference Equations:
Algorithms

1 P. A. Hendriks and M. F. Singer, 1999

Definition of Liouvillian solutions, and the first algorithm to
compute them.

2 R. Bomboy, 2002

3 D.E. Khmelnov, 2008

4 R. Feng, M. F. Singer, M. Wu, 2008

5 S.A. Abramov, M.A. Barkatou and D.E. Khmelnov, 2009
6 Y. Cha and M. van Hoeij, 2009

Reduced combinatorial complexity (but only the irreducible
case is handled).
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Algorithms Definitions and Properties Approach Example

Liouvillian Solutions of Linear Difference Equations:
Our Contributions

Prior algorithms reduce computing:
Liouvillian solutions of L

to a previously solved problem:
Hypergeometric solutions of another operator, say L̃.

Hypergeometric solutions are computed with a combinatorial
algorithm (cost is exponential in # singularities).

Problem: L̃ has n times more singularities than L
(this raises # combinations to the n’th power!)

Our algorithm does not increase the number of singularities.
(so # combinations is smaller).

Y. Cha & M. van Hoeij – Speaker: Cha Liouvillian Solutions of Irreducible Linear Difference Equations



Algorithms Definitions and Properties Approach Example

Liouvillian Solutions of Linear Difference Equations:
Our Contributions

Prior algorithms reduce computing:
Liouvillian solutions of L

to a previously solved problem:
Hypergeometric solutions of another operator, say L̃.

Hypergeometric solutions are computed with a combinatorial
algorithm (cost is exponential in # singularities).

Problem: L̃ has n times more singularities than L
(this raises # combinations to the n’th power!)

Our algorithm does not increase the number of singularities.
(so # combinations is smaller).

Y. Cha & M. van Hoeij – Speaker: Cha Liouvillian Solutions of Irreducible Linear Difference Equations



Algorithms Definitions and Properties Approach Example

Liouvillian Solutions of Linear Difference Equations:
Our Contributions

Prior algorithms reduce computing:
Liouvillian solutions of L

to a previously solved problem:
Hypergeometric solutions of another operator, say L̃.

Hypergeometric solutions are computed with a combinatorial
algorithm (cost is exponential in # singularities).

Problem: L̃ has n times more singularities than L
(this raises # combinations to the n’th power!)

Our algorithm does not increase the number of singularities.
(so # combinations is smaller).

Y. Cha & M. van Hoeij – Speaker: Cha Liouvillian Solutions of Irreducible Linear Difference Equations



Algorithms Definitions and Properties Approach Example

Liouvillian Solutions of Linear Difference Equations:
Linear Difference Operator

A linear difference operator

L = an�
n + an−1�

n−1 + ⋅ ⋅ ⋅+ a0�
0

where ai ∈ ℂ(x) and � is the shift operator: �(u(x)) = u(x + 1)
corresponds to a difference equation

an(x)u(x + n) + an−1(x)u(x + n − 1) + ⋅ ⋅ ⋅+ a0(x)u(x) = 0.

Example:

If L = � − x then the equation L(u(x)) = 0 is
u(x + 1)− xu(x) = 0 and Γ(x) is a solution of L.
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Algorithms Definitions and Properties Approach Example

Gauge Equivalence

Notation:

V (L) = solution space of L.

Definition

Operators L1 and L2 in ℂ(x)[� ] are called gauge equivalent
if they have the same order and

G (V (L1)) = V (L2) for some G ∈ ℂ(x)[� ].

Then G is called a gauge transformation from L1 to L2.

Inverse gauge transformation:

Given L1 and G we can find G ′ ∈ ℂ(x)[� ] such that
G ′(V (L2)) = V (L1).
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Algorithms Definitions and Properties Approach Example

Gauge Equivalence

Notation:

L1 ∼g L2 means L1 is gauge equivalent to L2.

Remark

If L1 ∼g L2 and if we can solve L1 then we can also solve L2.

1 Find gauge transformation G with existing software,

2 then apply G to solutions of L1 to get solutions of L2.
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Algorithms Definitions and Properties Approach Example

Liouvillian Solutions of Linear Difference Equations:
Property

Theorem (Hendriks Singer 1999)

If L = an�
n + ⋅ ⋅ ⋅+ a0�

0 is irreducible then

∃ Liouvillian Solutions ⇐⇒ ∃b0 ∈ ℂ(x) such that

an�
n + ⋅ ⋅ ⋅+ a0�

0 ∼g �n + b0�
0

Remark

Operators of the form �n + b0�
0 are easy to solve, so if we know

b0 then we can solve L.
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Algorithms Definitions and Properties Approach Example

Liouvillian Solutions of Linear Difference Equations:
The Problem

Let L = an�
n + ⋅ ⋅ ⋅+ a0�

0 with ai ∈ ℂ[x ] and assume that

L ∼g �n + b0�
0

for some unknown b0 ∈ ℂ(x).

If we can find b0 then we can solve �n + b0�
0 and hence solve L.

Notation

write b0 = c� where � = monic poly
monic poly and c ∈ ℂ∗.

Remark

c is easy to compute, the main task is to compute �.
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Algorithms Definitions and Properties Approach Example

Liouvillian Solutions of Linear Difference Equations:
Approach

Definition

Let L = an�
n + ⋅ ⋅ ⋅+ a0�

0 ∈ ℂ[x ][� ] then the finite singularities of
L are Sing = {q + ℤ ∈ ℂ/ℤ ∣ q is root of a0an}

Theorem

If q1 + ℤ, . . . , qk + ℤ are the finite singularities then we may

assume � =
k∏

i=1

n−1∏
j=0

(x − qi − j)ki,j with ki ,j ∈ ℤ.

1 At each finite singularity pi ∈ ℂ/ℤ (where pi = qi + ℤ) we
have to find n unknown exponents ki ,0, . . . , ki ,n−1.

2 We can compute ki ,0 + ⋅ ⋅ ⋅+ ki ,n−1 from a0/an.
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Algorithms Definitions and Properties Approach Example

Valuation Growth

Definition

Let u(x) ∈ ℂ(x) be a non-zero meromorphic function. The
valuation growth of u(x) at p = q + ℤ is

lim inf
n→∞

(order of u(x) at x = n + q)

− lim inf
n→∞

(order of u(x) at x = −n + q)

Definition

Let p ∈ ℂ/ℤ and L be a difference operator. Then Minp(L) resp.
Maxp(L) is the minimum resp. maximum valuation growth at p,
taken over all meromorphic solutions of L.

Theorem

If L1 ∼g L2 then they have the same Minp,Maxp for all p ∈ ℂ/ℤ.
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Algorithms Definitions and Properties Approach Example

Example of Operator of order 3
with one finite singularity at p = ℤ

Suppose L = a3�
3 + a2�

2 + a1� + a0 and that

L ∼g �3 + c ⋅ xk0(x − 1)k1(x − 2)k2

1 c can be computed from a0/a3

2 k0 + k1 + k2 can be computed from a0/a3

3 max{k0, k1, k2} = Maxℤ(L)

4 min{k0, k1, k2} = Minℤ(L)

Items 2, 3, 4 determine k0, k1, k2 up to a permutation.
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Algorithms Definitions and Properties Approach Example

Example with two finite singularities at ℤ and 1
2 + ℤ

Suppose L = a3�
3 + a2�

2 + a1� + a0 is gauge equivalent to

�3 + c ⋅ xk0(x − 1)k1(x − 2)k2 ⋅ (x − 1

2
)l0(x − 3

2
)l1(x − 5

2
)l2

1 c , k0 + k1 + k2, and l0 + l1 + l2 can be computed from a0/a3

2 min{k0, k1, k2} = Minℤ(L)

3 max{k0, k1, k2} = Maxℤ(L)

4 min{l0, l1, l2} = Min 1
2

+ℤ(L)

5 max{l0, l1, l2} = Max 1
2

+ℤ(L)

This determines k0, k1, k2 up to a permutation, and also l0, l1, l2 up
to a permutation.

Worst case is 3! ⋅ 3! combinations (actually: 1/3 of that).
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Algorithms Definitions and Properties Approach Example

Liouvillian Solutions of Linear Difference Equations:
Example L = x� 3 + � 2 − (x + 1)� − x(x + 1)2(2x − 1)

Sing = {ℤ, 1
2 + ℤ} and c = −2.

At ℤ,
min = 0, max = 1, sum = 2

So the exponents of x ⋅⋅⋅(x − 1)⋅⋅⋅(x − 2)⋅⋅⋅ must be a
permutation of 0, 1, 1

At 1
2 + ℤ,

min = 0, max = 1, sum = 1

So the exponents of (x − 1
2 )⋅⋅⋅(x − 3

2 )⋅⋅⋅(x − 5
2 )⋅⋅⋅ must be a

permutation of 0, 0, 1
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Algorithms Definitions and Properties Approach Example

Liouvillian Solutions of Linear Difference Equations:
Example L = x� 3 + � 2 − (x + 1)� − x(x + 1)2(2x − 1)

Candidates of c� are

1 −2x1(x − 1)1(x − 2)0(x − 1/2)1(x − 3/2)0(x − 5/2)0

2 −2x1(x − 1)1(x − 2)0(x − 1/2)0(x − 3/2)1(x − 5/2)0

3 −2x1(x − 1)1(x − 2)0(x − 1/2)0(x − 3/2)0(x − 5/2)1

4 −2x0(x − 1)1(x − 2)1(x − 1/2)0(x − 3/2)0(x − 5/2)1

5 −2x0(x − 1)1(x − 2)1(x − 1/2)0(x − 3/2)1(x − 5/2)0

6 −2x0(x − 1)1(x − 2)1(x − 1/2)1(x − 3/2)0(x − 5/2)0

7 −2x1(x − 1)0(x − 2)1(x − 1/2)1(x − 3/2)0(x − 5/2)0

8 −2x1(x − 1)0(x − 2)1(x − 1/2)0(x − 3/2)0(x − 5/2)1

9 −2x1(x − 1)0(x − 2)1(x − 1/2)0(x − 3/2)1(x − 5/2)0

Only need to try 1, 2, 3, the others are redundant.
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Algorithms Definitions and Properties Approach Example

Liouvillian Solutions of Linear Difference Equations:
Example L = x� 3 + � 2 − (x + 1)� − x(x + 1)2(2x − 1)

�3 − 2x(x − 1)(x − 1/2) is gauge equivalent to L

Gauge transformation is � + x − 1.

Basis of solutions of �3 − 2x(x − 1)(x − 1/2) is

{(�k)xv(x)} for k = 0 . . . 2

where v(x) = 3x2x/3Γ( x3 )Γ( x−1
3 )Γ(

x− 1
2

3 ) and �3 = 1.

Thus, Basis of solutions of L is

{(�k)x+1v(x + 1) + (x − 1)(�k)xv(x)} for k = 0 . . . 2
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Liouvillian Solutions of Linear Difference Equations:
Example L = x� 3 + � 2 − (x + 1)� − x(x + 1)2(2x − 1)

�3 − 2x(x − 1)(x − 1/2) is gauge equivalent to L

Gauge transformation is � + x − 1.

Basis of solutions of �3 − 2x(x − 1)(x − 1/2) is

{(�k)xv(x)} for k = 0 . . . 2

where v(x) = 3x2x/3Γ( x3 )Γ( x−1
3 )Γ(

x− 1
2

3 ) and �3 = 1.

Thus, Basis of solutions of L is

{(�k)x+1v(x + 1) + (x − 1)(�k)xv(x)} for k = 0 . . . 2
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