Liouvillian Solutions of Irreducible Linear Difference Equations

Yongjae Cha Mark van Hoeij ycha@math.fsu.edu hoeij@math.fsu.edu

Florida State University

Talk presented by $\operatorname{YONGJAE}\,\operatorname{CHA}$

Liouvillian Solutions of Linear Difference Equations: Algorithms

- P. A. Hendriks and M. F. Singer, 1999
 - Definition of Liouvillian solutions, and the first algorithm to compute them.
- 2 R. Bomboy, 2002
- 3 D.E. Khmelnov, 2008
- 8 R. Feng, M. F. Singer, M. Wu, 2008
- S.A. Abramov, M.A. Barkatou and D.E. Khmelnov, 2009
- 9 Y. Cha and M. van Hoeij, 2009
 - Reduced combinatorial complexity (but only the irreducible case is handled).

Liouvillian Solutions of Linear Difference Equations: Our Contributions

- Prior algorithms reduce computing: Liouvillian solutions of L to a previously solved problem: Hypergeometric solutions of another operator, say L̃.
- Hypergeometric solutions are computed with a combinatorial algorithm (cost is exponential in # singularities).
- Problem: *L̃* has *n* times more singularities than *L* (this raises # combinations to the *n*'th power!)
- Our algorithm does not increase the number of singularities. (so # combinations is smaller).

伺 ト イ ヨ ト イ ヨ ト

Liouvillian Solutions of Linear Difference Equations: Our Contributions

 Prior algorithms reduce computing: Liouvillian solutions of L to a previously solved problem: Hypergeometric solutions of another operator, say L̃.

- Hypergeometric solutions are computed with a combinatorial algorithm (cost is exponential in # singularities).
- Problem: *L̃* has *n* times more singularities than *L* (this raises # combinations to the *n*'th power!)
- Our algorithm does not increase the number of singularities. (so # combinations is smaller).

伺 ト イ ヨ ト イ ヨ ト

Liouvillian Solutions of Linear Difference Equations: Our Contributions

- Prior algorithms reduce computing: Liouvillian solutions of L to a previously solved problem: Hypergeometric solutions of another operator, say L̃.
- Hypergeometric solutions are computed with a combinatorial algorithm (cost is exponential in # singularities).
- Problem: *L̃* has *n* times more singularities than *L* (this raises # combinations to the *n*'th power!)
- Our algorithm does not increase the number of singularities. (so # combinations is smaller).

Liouvillian Solutions of Linear Difference Equations: Linear Difference Operator

A linear difference operator

$$L = a_n \tau^n + a_{n-1} \tau^{n-1} + \dots + a_0 \tau^0$$

where $a_i \in \mathbb{C}(x)$ and τ is the shift operator: $\tau(u(x)) = u(x+1)$ corresponds to a difference equation

$$a_n(x)u(x+n) + a_{n-1}(x)u(x+n-1) + \cdots + a_0(x)u(x) = 0.$$

Example:

• If
$$L = \tau - x$$
 then the equation $L(u(x)) = 0$ is
 $u(x+1) - xu(x) = 0$ and $\Gamma(x)$ is a solution of L.

Gauge Equivalence

Notation:

• V(L) = solution space of L.

Definition

Operators L_1 and L_2 in $\mathbb{C}(x)[\tau]$ are called *gauge equivalent* if they have the same order and

$$G(V(L_1)) = V(L_2)$$
 for some $G \in \mathbb{C}(x)[\tau]$.

Then G is called a gauge transformation from L_1 to L_2 .

Inverse gauge transformation:

• Given L_1 and G we can find $G' \in \mathbb{C}(x)[\tau]$ such that $G'(V(L_2)) = V(L_1)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Gauge Equivalence

Notation:

• V(L) = solution space of L.

Definition

Operators L_1 and L_2 in $\mathbb{C}(x)[\tau]$ are called *gauge equivalent* if they have the same order and

$$G(V(L_1)) = V(L_2)$$
 for some $G \in \mathbb{C}(x)[\tau]$.

Then G is called a gauge transformation from L_1 to L_2 .

Inverse gauge transformation:

• Given L_1 and G we can find $G' \in \mathbb{C}(x)[\tau]$ such that $G'(V(L_2)) = V(L_1)$.

伺 ト イヨト イヨト

Gauge Equivalence

Notation:

• $L_1 \sim_g L_2$ means L_1 is gauge equivalent to L_2 .

Remark

If $L_1 \sim_g L_2$ and if we can solve L_1 then we can also solve L_2 .

- Find gauge transformation G with existing software,
- **2** then apply G to solutions of L_1 to get solutions of L_2 .

通 と イ ヨ と イ ヨ と

Liouvillian Solutions of Linear Difference Equations: Property

Theorem (Hendriks Singer 1999)

If $L = a_n \tau^n + \cdots + a_0 \tau^0$ is irreducible then

 \exists Liouvillian Solutions $\iff \exists b_0 \in \mathbb{C}(x)$ such that

$$a_n \tau^n + \dots + a_0 \tau^0 \sim_g \tau^n + b_0 \tau^0$$

Remark

Operators of the form $\tau^n + b_0 \tau^0$ are easy to solve, so if we know b_0 then we can solve L.

・ 同 ト ・ ヨ ト ・ ヨ ト

Liouvillian Solutions of Linear Difference Equations: Property

Theorem (Hendriks Singer 1999)

If $L = a_n \tau^n + \cdots + a_0 \tau^0$ is irreducible then

 \exists Liouvillian Solutions $\iff \exists b_0 \in \mathbb{C}(x)$ such that

$$a_n \tau^n + \dots + a_0 \tau^0 \sim_g \tau^n + b_0 \tau^0$$

Remark

Operators of the form $\tau^n + b_0 \tau^0$ are easy to solve, so if we know b_0 then we can solve L.

Liouvillian Solutions of Linear Difference Equations: The Problem

Let
$$L = a_n \tau^n + \cdots + a_0 \tau^0$$
 with $a_i \in \mathbb{C}[x]$ and assume that

$$L \sim_g \tau^n + b_0 \tau^0$$

Algorithms Definitions and Properties Approach Example

for some unknown $b_0 \in \mathbb{C}(x)$.

If we can find b_0 then we can solve $\tau^n + b_0 \tau^0$ and hence solve L.

Notation

write $b_0 = c\phi$ where $\phi = \frac{\text{monic poly}}{\text{monic poly}}$ and $c \in \mathbb{C}^*$.

Remark

c is easy to compute, the main task is to compute ϕ .

Liouvillian Solutions of Linear Difference Equations: The Problem

Let
$$L = a_n \tau^n + \cdots + a_0 \tau^0$$
 with $a_i \in \mathbb{C}[x]$ and assume that

$$L \sim_g \tau^n + b_0 \tau^0$$

Algorithms Definitions and Properties Approach Example

for some unknown $b_0 \in \mathbb{C}(x)$.

If we can find b_0 then we can solve $\tau^n + b_0 \tau^0$ and hence solve L.

Notation

write $b_0 = c\phi$ where $\phi = \frac{\text{monic poly}}{\text{monic poly}}$ and $c \in \mathbb{C}^*$.

Remark

c is easy to compute, the main task is to compute $\phi.$

Liouvillian Solutions of Linear Difference Equations: The Problem

Let
$$L = a_n \tau^n + \cdots + a_0 \tau^0$$
 with $a_i \in \mathbb{C}[x]$ and assume that

$$L \sim_g \tau^n + b_0 \tau^0$$

Algorithms Definitions and Properties Approach Example

for some unknown $b_0 \in \mathbb{C}(x)$.

If we can find b_0 then we can solve $\tau^n + b_0 \tau^0$ and hence solve L.

Notation

write $b_0 = c\phi$ where $\phi = \frac{\text{monic poly}}{\text{monic poly}}$ and $c \in \mathbb{C}^*$.

Remark

c is easy to compute, the main task is to compute ϕ .

Liouvillian Solutions of Linear Difference Equations: Approach

Definition

Let $L = a_n \tau^n + \dots + a_0 \tau^0 \in \mathbb{C}[x][\tau]$ then the finite singularities of L are $Sing = \{q + \mathbb{Z} \in \mathbb{C}/\mathbb{Z} \mid q \text{ is root of } a_0 a_n\}$

Theorem

If
$$q_1 + \mathbb{Z}, \ldots, q_k + \mathbb{Z}$$
 are the finite singularities then we may
assume $\phi = \prod_{i=1}^{k} \prod_{j=0}^{n-1} (x - q_i - j)^{k_{i,j}}$ with $k_{i,j} \in \mathbb{Z}$.

- At each finite singularity $p_i \in \mathbb{C}/\mathbb{Z}$ (where $p_i = q_i + \mathbb{Z}$) we have to find *n* unknown exponents $k_{i,0}, \ldots, k_{i,n-1}$.
- 2 We can compute $k_{i,0} + \cdots + k_{i,n-1}$ from a_0/a_n .

イロト イポト イラト イラト

Liouvillian Solutions of Linear Difference Equations: Approach

Definition

Let $L = a_n \tau^n + \dots + a_0 \tau^0 \in \mathbb{C}[x][\tau]$ then the finite singularities of L are $Sing = \{q + \mathbb{Z} \in \mathbb{C}/\mathbb{Z} \mid q \text{ is root of } a_0 a_n\}$

Theorem

If
$$q_1 + \mathbb{Z}, ..., q_k + \mathbb{Z}$$
 are the finite singularities then we may
assume $\phi = \prod_{i=1}^{k} \prod_{j=0}^{n-1} (x - q_i - j)^{k_{i,j}}$ with $k_{i,j} \in \mathbb{Z}$.

- At each finite singularity $p_i \in \mathbb{C}/\mathbb{Z}$ (where $p_i = q_i + \mathbb{Z}$) we have to find *n* unknown exponents $k_{i,0}, \ldots, k_{i,n-1}$.
- 2 We can compute $k_{i,0} + \cdots + k_{i,n-1}$ from a_0/a_n .

イロト イポト イラト イラト

Liouvillian Solutions of Linear Difference Equations: Approach

Definition

Let $L = a_n \tau^n + \dots + a_0 \tau^0 \in \mathbb{C}[x][\tau]$ then the finite singularities of L are $Sing = \{q + \mathbb{Z} \in \mathbb{C}/\mathbb{Z} \mid q \text{ is root of } a_0 a_n\}$

Theorem

If
$$q_1 + \mathbb{Z}, ..., q_k + \mathbb{Z}$$
 are the finite singularities then we may
assume $\phi = \prod_{i=1}^{k} \prod_{j=0}^{n-1} (x - q_i - j)^{k_{i,j}}$ with $k_{i,j} \in \mathbb{Z}$.

• At each finite singularity $p_i \in \mathbb{C}/\mathbb{Z}$ (where $p_i = q_i + \mathbb{Z}$) we have to find *n* unknown exponents $k_{i,0}, \ldots, k_{i,n-1}$.

2 We can compute $k_{i,0} + \cdots + k_{i,n-1}$ from a_0/a_n .

- 4 同 6 4 日 6 4 日 6

Liouvillian Solutions of Linear Difference Equations: Approach

Definition

Let $L = a_n \tau^n + \dots + a_0 \tau^0 \in \mathbb{C}[x][\tau]$ then the finite singularities of L are $Sing = \{q + \mathbb{Z} \in \mathbb{C}/\mathbb{Z} \mid q \text{ is root of } a_0 a_n\}$

Theorem

If
$$q_1 + \mathbb{Z}, ..., q_k + \mathbb{Z}$$
 are the finite singularities then we may
assume $\phi = \prod_{i=1}^{k} \prod_{j=0}^{n-1} (x - q_i - j)^{k_{i,j}}$ with $k_{i,j} \in \mathbb{Z}$.

- At each finite singularity $p_i \in \mathbb{C}/\mathbb{Z}$ (where $p_i = q_i + \mathbb{Z}$) we have to find *n* unknown exponents $k_{i,0}, \ldots, k_{i,n-1}$.
- 2 We can compute $k_{i,0} + \cdots + k_{i,n-1}$ from a_0/a_n .

Valuation Growth

Definition

Let $u(x) \in \mathbb{C}(x)$ be a non-zero meromorphic function. The valuation growth of u(x) at $p = q + \mathbb{Z}$ is

 $\liminf_{n\to\infty} (\text{order of } u(x) \text{ at } x = n+q)$

- $\liminf_{n\to\infty} (\text{order of } u(x) \text{ at } x = -n+q)$

Definition

Let $p \in \mathbb{C}/\mathbb{Z}$ and L be a difference operator. Then $\operatorname{Min}_p(L)$ resp. $\operatorname{Max}_p(L)$ is the minimum resp. maximum valuation growth at p, taken over all meromorphic solutions of L.

Theorem

If $L_1\sim_g L_2$ then they have the same $\operatorname{Min}_p, \operatorname{Max}_p$ for all $p\in \mathbb{C}/\mathbb{Z}$.

Valuation Growth

Definition

Let $u(x) \in \mathbb{C}(x)$ be a non-zero meromorphic function. The valuation growth of u(x) at $p = q + \mathbb{Z}$ is

$$\liminf_{n\to\infty} (\text{order of } u(x) \text{ at } x = n+q)$$

- $\liminf_{n\to\infty} (\text{order of } u(x) \text{ at } x = -n+q)$

Definition

Let $p \in \mathbb{C}/\mathbb{Z}$ and L be a difference operator. Then $\operatorname{Min}_p(L)$ resp. $\operatorname{Max}_p(L)$ is the minimum resp. maximum valuation growth at p, taken over all meromorphic solutions of L.

Theorem

If $L_1\sim_g L_2$ then they have the same $\operatorname{Min}_p, \operatorname{Max}_p$ for all $p\in \mathbb{C}/\mathbb{Z}$

Valuation Growth

Definition

Let $u(x) \in \mathbb{C}(x)$ be a non-zero meromorphic function. The valuation growth of u(x) at $p = q + \mathbb{Z}$ is

$$\liminf_{n\to\infty} (\text{order of } u(x) \text{ at } x = n+q)$$

- $\liminf_{n\to\infty} (\text{order of } u(x) \text{ at } x = -n+q)$

Definition

Let $p \in \mathbb{C}/\mathbb{Z}$ and L be a difference operator. Then $\operatorname{Min}_p(L)$ resp. $\operatorname{Max}_p(L)$ is the minimum resp. maximum valuation growth at p, taken over all meromorphic solutions of L.

Theorem

If $L_1 \sim_g L_2$ then they have the same Min_p, Max_p for all $p \in \mathbb{C}/\mathbb{Z}$.

Example of Operator of order 3 with one finite singularity at $p = \mathbb{Z}$

Suppose
$$L = a_3 \tau^3 + a_2 \tau^2 + a_1 \tau + a_0$$
 and that

$$L \sim_g \tau^3 + c \cdot x^{k_0} (x-1)^{k_1} (x-2)^{k_2}$$

• c can be computed from a_0/a_3

- 2 $k_0 + k_1 + k_2$ can be computed from a_0/a_3
- $ammax\{k_0, k_1, k_2\} = \operatorname{Max}_{\mathbb{Z}}(L)$
- $\bigoplus \min\{k_0, k_1, k_2\} = \operatorname{Min}_{\mathbb{Z}}(L)$

Items 2, 3, 4 determine k_0, k_1, k_2 up to a permutation.

直 と く ヨ と く ヨ と

Example of Operator of order 3 with one finite singularity at $p = \mathbb{Z}$

Suppose
$$L = a_3 \tau^3 + a_2 \tau^2 + a_1 \tau + a_0$$
 and that

$$L \sim_g \tau^3 + c \cdot x^{k_0} (x-1)^{k_1} (x-2)^{k_2}$$

• c can be computed from
$$a_0/a_3$$

2
$$k_0 + k_1 + k_2$$
 can be computed from a_0/a_3

$$amax\{k_0, k_1, k_2\} = Max_{\mathbb{Z}}(L)$$

$$omega min\{k_0, k_1, k_2\} = \operatorname{Min}_{\mathbb{Z}}(L)$$

Items 2, 3, 4 determine k_0, k_1, k_2 up to a permutation.

伺 ト く ヨ ト く ヨ ト

Example of Operator of order 3 with one finite singularity at $p = \mathbb{Z}$

Suppose
$$L = a_3 \tau^3 + a_2 \tau^2 + a_1 \tau + a_0$$
 and that

$$L \sim_g \tau^3 + c \cdot x^{k_0} (x-1)^{k_1} (x-2)^{k_2}$$

• c can be computed from
$$a_0/a_3$$

2
$$k_0 + k_1 + k_2$$
 can be computed from a_0/a_3

$$amax\{k_0, k_1, k_2\} = Max_{\mathbb{Z}}(L)$$

$$ombox{ min}\{k_0,k_1,k_2\} = \operatorname{Min}_{\mathbb{Z}}(L)$$

Items 2, 3, 4 determine k_0, k_1, k_2 up to a permutation.

▶ < □ ▶ < □</p>

Suppose $L = a_3 \tau^3 + a_2 \tau^2 + a_1 \tau + a_0$ is gauge equivalent to

$$au^3 + c \cdot x^{k_0} (x-1)^{k_1} (x-2)^{k_2} \cdot (x-rac{1}{2})^{l_0} (x-rac{3}{2})^{l_1} (x-rac{5}{2})^{l_2}$$

c, k₀ + k₁ + k₂, and l₀ + l₁ + l₂ can be computed from a₀/a₃
min{k₀, k₁, k₂} = Min_Z(L)
max{k₀, k₁, k₂} = Max_Z(L)
min{l₀, l₁, l₂} = Min_{1/2+Z}(L)
max{l₀, l₁, l₂} = Max_{1/2+Z}(L)

This determines k_0, k_1, k_2 up to a permutation, and also l_0, l_1, l_2 up to a permutation.

Worst case is $3! \cdot 3!$ combinations (actually: 1/3 of that).

向下 イヨト イヨト

Suppose $L = a_3 \tau^3 + a_2 \tau^2 + a_1 \tau + a_0$ is gauge equivalent to

$$au^3 + c \cdot x^{k_0} (x-1)^{k_1} (x-2)^{k_2} \cdot (x-rac{1}{2})^{l_0} (x-rac{3}{2})^{l_1} (x-rac{5}{2})^{l_2}$$

c, k₀ + k₁ + k₂, and l₀ + l₁ + l₂ can be computed from a₀/a₃
min{k₀, k₁, k₂} = Min_Z(L)
max{k₀, k₁, k₂} = Max_Z(L)

• min{
$$l_0, l_1, l_2$$
} = Min_{\frac{1}{2} + \mathbb{Z}}(L)

$$o \max\{l_0, l_1, l_2\} = \operatorname{Max}_{\frac{1}{2} + \mathbb{Z}}(L)$$

This determines k_0, k_1, k_2 up to a permutation, and also l_0, l_1, l_2 up to a permutation.

Worst case is $3! \cdot 3!$ combinations (actually: 1/3 of that).

伺 ト イ ヨ ト イ ヨ ト

Suppose $L = a_3 \tau^3 + a_2 \tau^2 + a_1 \tau + a_0$ is gauge equivalent to

$$au^3 + c \cdot x^{k_0} (x-1)^{k_1} (x-2)^{k_2} \cdot (x-rac{1}{2})^{l_0} (x-rac{3}{2})^{l_1} (x-rac{5}{2})^{l_2}$$

This determines k_0, k_1, k_2 up to a permutation, and also l_0, l_1, l_2 up to a permutation.

Worst case is $3! \cdot 3!$ combinations (actually: 1/3 of that).

直 と く ヨ と く ヨ と

Suppose $L = a_3 \tau^3 + a_2 \tau^2 + a_1 \tau + a_0$ is gauge equivalent to

$$au^3 + c \cdot x^{k_0} (x-1)^{k_1} (x-2)^{k_2} \cdot (x-rac{1}{2})^{l_0} (x-rac{3}{2})^{l_1} (x-rac{5}{2})^{l_2}$$

This determines k_0, k_1, k_2 up to a permutation, and also l_0, l_1, l_2 up to a permutation.

Worst case is $3! \cdot 3!$ combinations (actually: 1/3 of that).

Liouvillian Solutions of Linear Difference Equations: Example $L = x\tau^3 + \tau^2 - (x+1)\tau - x(x+1)^2(2x-1)$

• Sing =
$$\{\mathbb{Z}, \frac{1}{2} + \mathbb{Z}\}$$
 and $c = -2$.

• At Z,

min = 0, max = 1, sum = 2

So the exponents of $x^{\dots}(x-1)^{\dots}(x-2)^{\dots}$ must be a permutation of 0, 1, 1

• At $\frac{1}{2} + \mathbb{Z}$,

$$min = 0, \quad max = 1, \quad sum = 1$$

So the exponents of $(x - \frac{1}{2})^{\dots}(x - \frac{3}{2})^{\dots}(x - \frac{5}{2})^{\dots}$ must be a permutation of 0, 0, 1

- 4 周 ト - 4 月 ト - 4 月 ト - -

Liouvillian Solutions of Linear Difference Equations: Example $L = x\tau^3 + \tau^2 - (x+1)\tau - x(x+1)^2(2x-1)$

• Sing =
$$\{\mathbb{Z}, \frac{1}{2} + \mathbb{Z}\}$$
 and $c = -2$.

At ℤ,

$$min = 0, max = 1, sum = 2$$

So the exponents of $x^{\dots}(x-1)^{\dots}(x-2)^{\dots}$ must be a permutation of 0, 1, 1

• At $\frac{1}{2} + \mathbb{Z}$,

$$min = 0, \quad max = 1, \quad sum = 1$$

So the exponents of $(x - \frac{1}{2})^{\dots}(x - \frac{3}{2})^{\dots}(x - \frac{5}{2})^{\dots}$ must be a permutation of 0, 0, 1

A (1) A (2) A (2) A

Liouvillian Solutions of Linear Difference Equations: Example $L = x\tau^3 + \tau^2 - (x+1)\tau - x(x+1)^2(2x-1)$

• Sing =
$$\{\mathbb{Z}, \frac{1}{2} + \mathbb{Z}\}$$
 and $c = -2$.

At ℤ,

$$min = 0, max = 1, sum = 2$$

So the exponents of $x^{\dots}(x-1)^{\dots}(x-2)^{\dots}$ must be a permutation of 0, 1, 1

• At
$$\frac{1}{2} + \mathbb{Z}$$
,

$$min = 0, max = 1, sum = 1$$

So the exponents of $(x - \frac{1}{2})^{\dots}(x - \frac{3}{2})^{\dots}(x - \frac{5}{2})^{\dots}$ must be a permutation of 0,0,1

伺下 イヨト イヨト

Liouvillian Solutions of Linear Difference Equations: Example $L = x\tau^3 + \tau^2 - (x+1)\tau - x(x+1)^2(2x-1)$

Candidates of $c\phi$ are

$$\begin{array}{l} \bullet & -2x^{1}(x-1)^{1}(x-2)^{0}(x-1/2)^{1}(x-3/2)^{0}(x-5/2)^{0} \\ \bullet & -2x^{1}(x-1)^{1}(x-2)^{0}(x-1/2)^{0}(x-3/2)^{1}(x-5/2)^{0} \\ \bullet & -2x^{1}(x-1)^{1}(x-2)^{0}(x-1/2)^{0}(x-3/2)^{0}(x-5/2)^{1} \\ \bullet & -2x^{0}(x-1)^{1}(x-2)^{1}(x-1/2)^{0}(x-3/2)^{0}(x-5/2)^{1} \\ \bullet & -2x^{0}(x-1)^{1}(x-2)^{1}(x-1/2)^{0}(x-3/2)^{1}(x-5/2)^{0} \\ \bullet & -2x^{0}(x-1)^{1}(x-2)^{1}(x-1/2)^{1}(x-3/2)^{0}(x-5/2)^{0} \\ \bullet & -2x^{1}(x-1)^{0}(x-2)^{1}(x-1/2)^{1}(x-3/2)^{0}(x-5/2)^{0} \\ \bullet & -2x^{1}(x-1)^{0}(x-2)^{1}(x-1/2)^{0}(x-3/2)^{0}(x-5/2)^{1} \\ \bullet & -2x^{1}(x-1)^{0}(x-2)^{1}(x-1/2)^{0}(x-3/2)^{0}(x-5/2)^{1} \\ \bullet & -2x^{1}(x-1)^{0}(x-2)^{1}(x-1/2)^{0}(x-3/2)^{0}(x-5/2)^{1} \\ \bullet & -2x^{1}(x-1)^{0}(x-2)^{1}(x-1/2)^{0}(x-3/2)^{0}(x-5/2)^{1} \\ \bullet & -2x^{1}(x-1)^{0}(x-2)^{1}(x-1/2)^{0}(x-3/2)^{1}(x-5/2)^{0} \\ \bullet & -2x^{1}(x-1)^{0}(x-2)^{1}(x-1/2)^{0}(x-5/2)^{0} \\ \bullet & -2x^{1}(x-1)^{0}(x-2)^{1}(x-1/2)^{0}(x-5/2)^{0} \\ \bullet & -2x^{1}(x-1)^{0}(x-2)^{1}(x-1)^{0}(x-5/2)^{0} \\ \bullet & -2x^{1}(x-1)^{0}(x-2)^{1}(x-1)^{0}(x-2)^{1}(x-5/2)^{0}$$

Only need to try 1, 2, 3, the others are redundant.

Liouvillian Solutions of Linear Difference Equations: Example $L = x\tau^3 + \tau^2 - (x+1)\tau - x(x+1)^2(2x-1)$

- $\tau^3 2x(x-1)(x-1/2)$ is gauge equivalent to L
- Gauge transformation is $\tau + x 1$.
- Basis of solutions of $\tau^3 2x(x-1)(x-1/2)$ is

 $\{(\xi^k)^x v(x)\}$ for k = 0...2

where $v(x) = 3^{x} 2^{x/3} \Gamma(\frac{x}{3}) \Gamma(\frac{x-1}{3}) \Gamma(\frac{x-\frac{1}{2}}{3})$ and $\xi^{3} = 1$.

• Thus, Basis of solutions of L is

$$\{(\xi^k)^{x+1}v(x+1) + (x-1)(\xi^k)^xv(x)\}$$
 for $k = 0...2$

Liouvillian Solutions of Linear Difference Equations: Example $L = x\tau^3 + \tau^2 - (x+1)\tau - x(x+1)^2(2x-1)$

- $\tau^3 2x(x-1)(x-1/2)$ is gauge equivalent to L
- Gauge transformation is $\tau + x 1$.
- Basis of solutions of $\tau^3 2x(x-1)(x-1/2)$ is

$$\{(\xi^k)^x v(x)\} \quad \text{for} \quad k = 0 \dots 2$$

where
$$v(x) = 3^{x}2^{x/3}\Gamma(\frac{x}{3})\Gamma(\frac{x-1}{3})\Gamma(\frac{x-\frac{1}{2}}{3})$$
 and $\xi^{3} = 1$.
Thus, Basis of solutions of *L* is

$$\{(\xi^k)^{x+1}v(x+1) + (x-1)(\xi^k)^xv(x)\}$$
 for $k = 0...2$

Liouvillian Solutions of Linear Difference Equations: Example $L = x\tau^3 + \tau^2 - (x+1)\tau - x(x+1)^2(2x-1)$

- $\tau^3 2x(x-1)(x-1/2)$ is gauge equivalent to L
- Gauge transformation is $\tau + x 1$.
- Basis of solutions of $\tau^3 2x(x-1)(x-1/2)$ is

$$\{(\xi^k)^x v(x)\}$$
 for $k = 0...2$

where $v(x) = 3^{x}2^{x/3}\Gamma(\frac{x}{3})\Gamma(\frac{x-1}{3})\Gamma(\frac{x-\frac{1}{2}}{3})$ and $\xi^{3} = 1$.

• Thus, Basis of solutions of L is

$$\{(\xi^k)^{x+1}v(x+1) + (x-1)(\xi^k)^xv(x)\}$$
 for $k = 0...2$