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Algorithms

Liouvillian Solutions of Linear Difference Equations:

Algorithms

@ P. A Hendriks and M. F. Singer, 1999

o Definition of Liouvillian solutions, and the first algorithm to
compute them.

@ R. Bomboy, 2002

© D.E. Khmelnov, 2008

@ R. Feng, M. F. Singer, M. Wu, 2008

© S.A. Abramov, M.A. Barkatou and D.E. Khmelnov, 2009

O Y. Cha and M. van Hoeij, 2009

o Reduced combinatorial complexity (but only the irreducible
case is handled).
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Algorithms

Liouvillian Solutions of Linear Difference Equations:

Our Contributions

@ Prior algorithms reduce computing:
Liouvillian solutions of L
to a previously solved problem:
Hypergeometric solutions of another operator, say L.
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Algorithms

Liouvillian Solutions of Linear Difference Equations:

Our Contributions

@ Prior algorithms reduce computing:
Liouvillian solutions of L
to a previously solved problem:
Hypergeometric solutions of another operator, say L.

@ Hypergeometric solutions are computed with a combinatorial
algorithm (cost is exponential in # singularities).
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Algorithms

Liouvillian Solutions of Linear Difference Equations:

Our Contributions

@ Prior algorithms reduce computing:
Liouvillian solutions of L
to a previously solved problem:
Hypergeometric solutions of another operator, say L.

@ Hypergeometric solutions are computed with a combinatorial
algorithm (cost is exponential in # singularities).

o Problem: L has n times more singularities than L
(this raises # combinations to the n'th power!)

@ Our algorithm does not increase the number of singularities.
(so # combinations is smaller).
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Algorithms

Liouvillian Solutions of Linear Difference Equations:

Linear Difference Operator

A linear difference operator

1

L=ay"+ap 17"+ 4 ap7°

where a; € C(x) and 7 is the shift operator: 7(u(x)) = u(x + 1)
corresponds to a difference equation

an(x)u(x +n)+ap_1(x)u(x+n—1)+--- 4+ ag(x)u(x) = 0.

Example:

o If L =7 — x then the equation L(u(x)) =0is
u(x +1) — xu(x) = 0 and I'(x) is a solution of L.
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Definitions and Properties
Gauge Equivalence

Notation:
e V(L) = solution space of L.

Definition
Operators L; and Ly in C(x)[] are called gauge equivalent
if they have the same order and

G(V(L1)) = V(L2) for some G € C(x)[r].

Then G is called a gauge transformation from Ly to L.
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Definitions and Properties
Gauge Equivalence

Notation:
e V(L) = solution space of L.

Definition
Operators L; and Ly in C(x)[] are called gauge equivalent
if they have the same order and

G(V(L1)) = V(L2) for some G € C(x)[r].

Then G is called a gauge transformation from Ly to L.

Inverse gauge transformation:

e Given Ly and G we can find G’ € C(x)[7] such that
G'(V(Lp)) = V(Ly).
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Definitions and Properties
Gauge Equivalence

Notation:

@ [ ~g Ly means L; is gauge equivalent to Lj.

If L1 ~¢ L[> and if we can solve L; then we can also solve L».

© Find gauge transformation G with existing software,

@ then apply G to solutions of L; to get solutions of L.
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Definitions and Properties

Liouvillian Solutions of Linear Difference Equations:
Property

Theorem (Hendriks Singer 1999)

IfL=a,m" + -+ ag7° is irreducible then
3 Liouvillian Solutions <= 3by € C(x) such that

anT" 4+ agr’ ~g 7"+ bor?
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Definitions and Properties

Liouvillian Solutions of Linear Difference Equations:
Property

Theorem (Hendriks Singer 1999)

IfL=a,m" + -+ ag7° is irreducible then
3 Liouvillian Solutions <= 3by € C(x) such that

anT" 4+ agr’ ~g 7"+ bor?

Operators of the form 7" + by70 are easy to solve, so if we know
bg then we can solve L.
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Definitions and Properties

Liouvillian Solutions of Linear Difference Equations:

The Problem

Let L = a,7" + -+ + agm® with a; € C[x] and assume that
L ~g 7"+ bor°
for some unknown by € C(x).

If we can find by then we can solve 7" + by7° and hence solve L.
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Definitions and Properties

Liouvillian Solutions of Linear Difference Equations:

The Problem

Let L = a,7" + -+ + agm® with a; € C[x] and assume that
L n 0
~g T+ boT
for some unknown by € C(x).

If we can find by then we can solve 7" + by7° and hence solve L.

write by = c¢ where ¢ = momic Py 5pq o C*,

monic poly
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Definitions and Properties

Liouvillian Solutions of Linear Difference Equations:

The Problem

Let L = a,7" + -+ + agm® with a; € C[x] and assume that
L n 0
~g T+ boT
for some unknown by € C(x).

If we can find by then we can solve 7" + by7° and hence solve L.

write by = c¢ where ¢ = momic Py 5pq o C*,

monic poly

c is easy to compute, the main task is to compute ¢.
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Approach

Liouvillian Solutions of Linear Difference Equations:
Approach

Definition

Let L = a,7" + - -+ + ap7° € C[x][7] then the finite singularities of
L are Sing ={q+7Z € C/Z | q is root of apan}
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Approach

Liouvillian Solutions of Linear Difference Equations:

Approach

Let L = a,7" + - -+ + ap7° € C[x][7] then the finite singularities of
L are Sing ={q+7Z € C/Z | q is root of apan}

Theorem

Ifqu+7Z,...,qx + Z are the finite singularities then we may
k n—1

assume ¢ = H H(x —qi— )% with kij € Z.
i=1j=0
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Approach

Liouvillian Solutions of Linear Difference Equations:

Approach

Let L = a,7" + - -+ + ap7° € C[x][7] then the finite singularities of
L are Sing ={q+7Z € C/Z | q is root of apan}

Ifqu+7Z,...,qx + Z are the finite singularities then we may
k n—1
assume ¢ = H H(x —qi— )% with kij € Z.
i=1j=0

@ At each finite singularity p; € C/Z (where p; = qi + Z) we
have to find n unknown exponents k;o, ..., ki n—1.
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Approach

Liouvillian Solutions of Linear Difference Equations:

Approach

Let L = a,7" + - -+ + ap7° € C[x][7] then the finite singularities of
L are Sing ={q+7Z € C/Z | q is root of apan}

Ifqu+7Z,...,qx + Z are the finite singularities then we may
k n—1
assume ¢ = H H(x —qi— )% with kij € Z.
i=1j=0

@ At each finite singularity p; € C/Z (where p; = qi + Z) we
have to find n unknown exponents k;o, ..., ki n—1.

@ We can compute kjg+ - - + ki n—1 from ag/an.
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Approach
Valuation Growth

Let u(x) € C(x) be a non-zero meromorphic function. The
valuation growth of u(x) at p=q+7Z is

lim inf(order of u(x) at x =n+ q)

n—o0

- |irT_1>inf(0rder of u(x) at x=—n+gq)
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Approach
Valuation Growth

Let u(x) € C(x) be a non-zero meromorphic function. The
valuation growth of u(x) at p=q+7Z is

lim inf(order of u(x) at x =n+ q)

n—o0

- |irT_1>inf(0rder of u(x) at x=—n+gq)

Definition

Let p € C/Z and L be a difference operator. Then Min,(L) resp.
Max, (L) is the minimum resp. maximum valuation growth at p,
taken over all meromorphic solutions of L.
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Approach

Valuation Growth

Let u(x) € C(x) be a non-zero meromorphic function. The
valuation growth of u(x) at p=q+7Z is

lim inf(order of u(x) at x =n+ q)

n—o0

- |irT_1>inf(0rder of u(x) at x=—n+gq)

Let p € C/Z and L be a difference operator. Then Min,(L) resp.
Max, (L) is the minimum resp. maximum valuation growth at p,

taken over all meromorphic solutions of L.

If Ly ~g Ly then they have the same Min,, Max, for all p € C/Z.
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Approach

Example of Operator of order 3

with one finite singularity at p = 7Z

Suppose L = az73 + ay7% + a17 + ap and that

L ~ 73—|—C-xkox—1k1x—2k2
g

@ c can be computed from ag/a3

@ ko + ki + ka can be computed from ag/a3
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Approach

Example of Operator of order 3

with one finite singularity at p = 7Z

Suppose L = az73 + ay7% + a17 + ap and that

L ~ 73—|—C-xkox—1k1x—2k2
g

¢ can be computed from ag/a3

ko + ki1 + ko can be computed from ag/a3
max{ ko, k1, ko } = Maxz(L)

min{ ko, k1, ko} = Mingz(L)

© 000
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Approach

Example of Operator of order 3

with one finite singularity at p = 7Z

Suppose L = az73 + ay7% + a17 + ap and that

L ~g T34 c-xPo(x —1)k(x —2)k

¢ can be computed from ag/a3

ko + ki1 + ko can be computed from ag/a3
max{ ko, k1, ko } = Maxz(L)

min{ ko, k1, ko} = Mingz(L)

© 000

Items 2, 3, 4 determine ko, k1, ko up to a permutation.
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Approach
Example with two finite singularities at Z and % + Z

Suppose L = az73 + ax7% + a7 + ap is gauge equivalent to
PP gauge eq

1 3 5
4o xlo(x — 1) (x —2)k . (x — 5)’O(X — 5)’1(x - 5)’2

Q ¢, ko+ ki + kg, and Ip + L + h can be computed from ag/as3
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Approach
Example with two finite singularities at Z and % + Z

Suppose L = az73 + ax7% + a7 + ap is gauge equivalent to
PP gauge eq

1 3 5
4o xlo(x — 1) (x —2)k . (x — 5)’O(X — 5)’1(x - 5)’2

Q ¢, ko+ ki + kg, and Ip + L + h can be computed from ag/as3
Q min{ko,kl,kz} :Minz(L)
(8 max{ko, kl, /Q} = MaXZ(L)
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Approach
Example with two finite singularities at Z and % + Z

Suppose L = az73 + ax7% + a7 + ap is gauge equivalent to
PP gauge eq

1 3 5
4o xlo(x — 1) (x —2)k . (x — 5)’O(X — 5)’1(x - 5)’2

¢, ko + ki + ko, and Iy + h + h can be computed from ag/a3
min{ ko, k1, ko} = Mingz(L)

max{ ko, k1, ko } = Maxz(L)

min{lp, h, h} = Min%+Z(L)

max{l, h,h} = Max%+Z(L)

© 6000
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Approach
Example with two finite singularities at Z and % + Z

Suppose L = az73 + ax7% + a7 + ap is gauge equivalent to
PP gauge eq

1 3 5
4o xlo(x — 1) (x —2)k . (x — 5)’O(X — 5)’1(x - 5)’2

¢, ko + ki + ko, and Iy + h + h can be computed from ag/a3
min{ ko, k1, ko} = Mingz(L)

max{ ko, k1, ko } = Maxz(L)

min{lp, h, h} = Min%+Z(L)

@ max{l, h,h} = Max%+Z(L)

© 000

This determines kg, k1, ko up to a permutation, and also lp, i, h up
to a permutation.

Worst case is 3! - 3! combinations (actually: 1/3 of that).
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Example

Liouvillian Solutions of Linear Difference Equations:

Example L = x73 + 72 — (x + 1)7 — x(x + 1)*(2x — 1)

e Sing ={Z, % +Z} and ¢ = —2.
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Example

Liouvillian Solutions of Linear Difference Equations:

Example L = x73 + 72 — (x + 1)7 — x(x + 1)*(2x — 1)

e Sing ={Z, % +Z} and ¢ = —2.
o At Z,
min=0, max=1 sum=2

So the exponents of x™(x — 1) (x —2)"" must be a
permutation of 0,1, 1
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Example

Liouvillian Solutions of Linear Difference Equations:

Example L = x73 + 72 — (x + 1)7 — x(x + 1)*(2x — 1)

e Sing ={Z, % +Z} and ¢ = —2.
o At Z,
min=0, max=1 sum=2

So the exponents of x™(x — 1) (x —2)"" must be a
permutation of 0,1, 1

° At 1 +7,
min=0, max=1 sum=1

So the exponents of (x — 3)™"(x — 2)"(x — 2) must be a
permutation of 0,0, 1
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Example

Liouvillian Solutions of Linear Difference Equations:

Example L = x73 + 72 — (x + 1)7 — x(x + 1)*(2x — 1)

Candidates of c¢ are

—2x (x — 1)Y(x —2)°(x — 1/2)}(x — 3/2)°(x — 5/2)°

—2x (x — 1)Y(x —2)°(x — 1/2)%(x — 3/2)}(x — 5/2)°

—2x (x — 1)Y(x —2)%(x — 1/2)°(x — 3/2)°(x — 5/2)*
(

)( )

)" (x ) ( )

)" (x )™ )
—2x%(x — 1)Y(x — 2) (x — 1/2)%(x — 3/2)°(x — 5/2)}
—2x%(x — 1)Y(x — 2)}(x — 1/2)%(x — 3/2)}(x — 5/2)°
—2x%(x — 1)Y(x — 2) (x — 1/2) (x — 3/2)°(x — 5/2)°
—2x1(x — 1)%(x — 2)}(x — 1/2)}(x — 3/2)°(x — 5/2)°
—2x (x — 1)%(x — 2)}(x — 1/2)°(x — 3/2)°(x — 5/2)*
Q —2x'(x —1)%(x —2)}(x —1/2)%(x — 3/2)}(x — 5/2)°

Only need to try 1, 2, 3, the others are redundant.

©00000O0CO0C
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Example

Liouvillian Solutions of Linear Difference Equations:

Example L = x73 + 72 — (x + 1)7 — x(x + 1)*(2x — 1)

o 73 —2x(x — 1)(x — 1/2) is gauge equivalent to L

o Gauge transformation is 7 + x — 1.
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Example

Liouvillian Solutions of Linear Difference Equations:

Example L = x73 + 72 — (x + 1)7 — x(x + 1)*(2x — 1)

o 73 —2x(x — 1)(x — 1/2) is gauge equivalent to L
o Gauge transformation is 7 + x — 1.

@ Basis of solutions of 73 — 2x(x — 1)(x — 1/2) is
{(€Yv(x)} for k=0...2

where v(x) = 32°T(5) (54 (*52) and € = 1.
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Example

Liouvillian Solutions of Linear Difference Equations:

Example L = x73 + 72 — (x + 1)7 — x(x + 1)*(2x — 1)

o 73 —2x(x — 1)(x — 1/2) is gauge equivalent to L
o Gauge transformation is 7 + x — 1.
e Basis of solutions of 73 — 2x(x — 1)(x — 1/2) is

{(€)v(x)} for k=0...2

where v(x) = 32°T(5) (54 (*52) and € = 1.

@ Thus, Basis of solutions of L is

((E YT (x +1) + (x — 1)(EYv(x)} for k=0...2
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